NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONS) DEGREE DEPARTMENT OF CIVIL AND WATER ENGINEERING PART II SECOND SEMESTER EXAMINATIONS – MAY 2014

HYDROLOGY - TCW 2202

Instructions:	Total marks:	100
Answer any four (4) questions	Time:	3 Hours

QUESTION 1

a.	Differentiate between depression storage and surface detentio	n and how each term			
	affect surface runoff.	(8 marks)			
b.	A station 'X' was inoperative for some time during which a station	torm occurred. The			
storm	totals at 3 stations A, B and C surrounding 'X', were respective	ely 6.6, 4.8 and 3.7			
cm. Th	ne normal annual precipitation amounts at stations X, A, B and	C are 65.6, 72.6,			
51.8 ai	nd 38.2 cm respectively. Estimate the storm precipitation for st	ation X			
		(7 marks)			
C.	Describe the processes forming the hydrologic cycle?	(10 marks)			
QUESTION 2					

a. Explain reservoir routing and channel routing. (8 marks)b. Derive the Muskingum routing equation and the expression for the routing

coefficients C₀, C₁, and C₂. (10 marks)
c. What are flood control measures? Describe 2 of the flood control measures to mitigate the effect of floods. (7 marks)

QUESTION 3

- a. Explain with neat sketches various types of aquifers. (10 marks)
 b. A 30 cm well fully penetrates an unconfined aquifer of 25 m depth when a discharge of 2100 l/min was being pumped. The observation wells at radial
 - distances of 30 m and 90 m indicates draw down of 5 m and 4m respectively. Estimate (i) the coefficient of permeability, (ii) transmissibility (T) and (iii) draw down at the pumping well. (15marks)

QUESTION 4

a. What is the importance of infiltration in hydrologic cycle? Explain the typical shape of an infiltration curve and discuss the practical importance of the ϕ -index

(10 marks)

b. The infiltration rates for different time intervals are given in Table Q4. Determine f_0 and derive an equation for the infiltration capacity (I.C) curve

Table Q4							
Time since	5	10	20	30	40	50	60
start of test							
(mins)							
f_t (cm/hr)	6.1	4.0	2.0	1.0	0.5	0.3	0.3
ft-fc	5.8	3.7	1.7	0.7	0.2	0	0

Table Q4

QUESTION 5

(15 marks)

a. i. A bridge has an intended design life of 120 years and is designed for a 1 in 100 year flood. What is the probability that something bigger will be experienced? (3 marks)

ii. A bridge pier is to be constructed inside a temporary cofferdam. If the cofferdam is designed for a 1 in 20 year flood and will be in the river for 2 winters, what is the probability that a larger flood will occur? (4 marks)

b. The annual maxima for a series of water years is shown in Table Q5b
i. Determine the magnitude of a 1 in 5, 1 in 20 and 1 in 100 year flood.
ii. The catchment is 25.3 km² and is almost entirely rural in character. There is a proposal for a urban housing development. Investigate the effect of the development on catchment flood magnitude and frequency. (18 marks)

Table 5b

Water year	1981	1982	1983	1984	1985	1986	1987	1988
Discharge Q	17.914	10.085	4.651	5.673	12.973	9.813	9.543	8.629
m^3/s								
Water year	1989	1990	1991	1992	1993	1994		
Discharge Q	6.239	4.936	3.807	13.843	7.074	7.525		
m^3/s								