NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY
DEPARTMENT CIVIL AND WATER ENGINEERING
BACHELOR OF ENGINEERING (HONOURS) DEGREE
PART II EXAMINATION - JUNE 2006
STRUCTURAL ANALYSIS I - TCW 2203

TIME: 3 HOURS
MAXIMUM MARK: 100
INSTRUCTIONS:
ANSWER ALL QUESTIONS.

QUESTION 1

a) Inspect the kinematic stability of the structures shown in Fig. 1.
b) State whether each structure is determinate or not.
(10 Marks)
(5 Marks)

QUESTION 2

Fig. 2 shows a structure of uniform cross sectional area and built of the same material. Construct the influence line diagram for the
i) Support reactions. (4 Marks)
ii) Shear force at point I (4 Marks)
iii) Bending moment at point I (4 Marks)

Also find the maximum bending moment in the section due to a train of three vertical point loads travel along the structure. The trainload is as follows, a load of 80 kN followed by a 60 kN load whose point of application is 2 m from the 80 kN load, which is in turn followed, by a 100 kN load located at 3 m from the 60 kN load. (15 Marks)

QUESTION 3

Find the member force in truss shown in fig. 3. (10 Marks)

QUESTION 4

iv) For the frame shown in Fig 3 which consists of members of constant flexural rigidity determine the vertical deflection at C if the frame is subjected to the same loading regime as that shown in the question number three. Use the virtual work method (unit load Method)
a) Use Fig. 4 to prove Maxwell's reciprocal theorem.

QUESTION 5

a) The rigid frame shown in fig. 5 has uniform flexural rigidity EI. Using Castigiliano's theorem, find the vertical and horizontal displacements at C.
(18 Marks)
b) Sketch the deflected shape of the frame. What rotation do you expect at B? Justify your answer.

