NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING BACHELOR OF ENGINEERING (HONOURS) DEGREE PART II SUPPLEMENTARY EXAMINATION - MAY 2011

 THEORY OF STRUCTURES - TCW 2203
INSTRUCTIONS

Answer all questions. Each question carries 25 marks

Q1
(a) A simple supported beam is subjected to the loading shown in Fig 1.1. Calculate the deflection at the section D and displacement at E. Take $E=90 \mathrm{GN} / \mathrm{m}^{2}$ and $\mathrm{I}=264 \times 10^{6}$ mm^{4}. Use the double integration method.
(b) Determine the displacement at the support B and the deflection at point C of the beam shown in Fig 1.2 EI is constant. Use the moment area theorems.

Q2

(a)State the differences between least work method and the virtual work method.
(b) Outline the differences between the conjugate beam method and the moment area theorems for calculating deflections in beams.
(c) Determine the displacement of the joint C on the frame shown in Fig 2.1. The cross sectional area is rectangular. Include the internal strain energy due to the axial load and shear. Take $\mathrm{E}=210 \mathrm{GPa}, \mathrm{G}=90 \mathrm{GPa}, \mathrm{I}=22 \times 10^{-6} \mathrm{~m}^{4}$ and $\mathrm{A}=150 \mathrm{~mm}^{2}$. Use the method of virtual energy.

Q4
(a)State the difference between bending moment diagram and an influence line diagram.
(b) Where can the approximate methods of analysis be used in design and analysis of structures.
(c) Use the portal method to determine approximately the reactions at A, B, C and D of the frame in Fig 3.1. Draw approximately the moment diagram for the frame. [20]

Q5
(a) Calculate the displacement at D of the beam shown in Fig 5.1. Take $\mathrm{E}=200 \mathrm{GPa}$ and I $=90 \times 10^{6} \mathrm{~mm}^{4}$. Use the method of virtual work.
(b) Determine the vertical displacement at joint I for the truss in Fig 5.2. Each member has a cross section of $30 \mathrm{~mm}^{2}$ and $\mathrm{E}=200 \mathrm{GPa}$. Use the Castligliano's second theorem.[14]
(c) Derive an expression that shows the relationship between shear force and the bending moment for a beam under the action of lateral loads.

Fig 1.1

Fig 1.2

Fig 2.1

Fig 3.1

Fig 4.1

Fig 4.2

