

## QUESTION 1 continued

12. $52^{\circ} 42^{\prime} 36^{\prime \prime}$
13. $64^{\circ} 44^{\prime} 10^{\prime \prime}$
14. $43^{\circ} 04^{\prime} 38^{\prime \prime}$
15. $48^{\circ} 09^{\prime} 33^{\prime \prime}$

Adjust the angles for geometrical consistency using any method you know. (25 marks)

## QUESTION 2

A straight tunnel is to be driven at a constant slope on the line joining two stations P and S which are on opposite sides of a hill as shown in fig. 2. P and $S$ lie on the formation level of the tunnel . An initial survey is required to establish the positions of the proposed tunnel entrances and to enable this to be done, three additional points; Q R and T are established on the hill. A closed-loop traverse P , Q , R , S , T and P is run . The observed horizontal angles and horizontal distances are as follows :

| Horizontal angles | Horizontal distances $(\mathrm{m})$ |
| :--- | :--- |
| $\mathrm{PQR}=93^{\circ} 17^{\prime} 45^{\prime \prime}$ | $\mathrm{PQ}=119,450$ |
| $\mathrm{QRS}=82^{\circ} 43^{\prime} 19^{\prime \prime}$ | $\mathrm{QR}=588,310$ |
| RST $=141^{\circ} 18^{\prime} 47^{\prime \prime}$ | $\mathrm{RS}=123,280$ |
| $\mathrm{STP}=93^{\circ} 18^{\prime} 44^{\prime \prime}$ | $\mathrm{ST}=391,110$ |
| $\mathrm{TPQ}=129^{\circ} 21^{\prime} 35^{\prime \prime}$ | $\mathrm{TP}=405,580$ |

The coordinates $(\mathrm{m})$ of P are $+450,000 \quad-550,000$. and bearing $\mathrm{P}-\mathrm{Q}=150^{\circ} 35^{\prime} 30^{\prime \prime}$

Calculate the adjusted coordinates of points $\mathrm{Q}, \mathrm{R}, \mathrm{S}$ and T , adjusted by the Bowditch method.

## QUESTION 3

Point $C$ was surveyed by sighting trigonometrical beacons; $A, B$ and $P$ as shown in fig 3 . The following information was obtained :

Mean observed horizontal angles
$P C B=142^{\circ} 01^{\prime} 55^{\prime \prime}$
$B C A=139^{\circ} 00^{\prime} 55^{\prime \prime}$
$A C P=78^{\circ} 56^{\prime} 55^{\prime \prime}$

Given

Coordinates (m)
$\mathrm{P}+9$ 392,800 $+8952,020$
$A+9844,180 \quad+6375,000$
$B+13365,170+8536,060$

Calculate the provisional coordinates of point C.
(25 marks)

## QUESTION 4

(a) Explain the following terms associated with vertical curves: (i) stopping sight distance (SSD) (3 marks) , (ii) full overtaking sight distance (F. O. S. D. ) ( 3marks), (iii) crest curve (2 marks) and sag curve
(2 marks)
(b) A parabolic vertical curve is to connect a-2,5\% gradient to a $+3,5 \%$ gradient on a highway designed for a speed of $100 \mathrm{~km} / \mathrm{hr}$ as shown in fig. 4 . The $\mathrm{K}-$ value for this highway is 26 and the minimum required length is to be used. The reduced level and through chainage of the intersection point of the
gradients are $1000,00 \mathrm{~m}$ and $617,490 \mathrm{~m}$ respectively and , in order to meet particular site conditions , the through chainage of the entry tangent point is to be $553,170 \mathrm{~m}$.

## Calculate ;

(i) the reduced levels of the tangent points.
(ii) the tangent lengths , i.e. $L_{1}$ and $L_{2}$.
(iii) through chainage of $R$.
(iv) gradient of BCD .
(25 marks)

## QUESTION 5

$A B, B C$ and $C D$ are three straight lengths of piping as shown in fig. 5 . It is proposed to build to build a circular dam so that the pipes will be tangential to the dam at points $\mathrm{E}, \mathrm{F}$ and G .

## Given

Coordinates(m)
B-178,760 -79,340
C - 108,390 $-207,970$
Bearings
$B-A=294^{\circ} 58^{\prime} 00^{\prime \prime}$
$C-D=234^{\circ} 24^{\prime} 00^{\prime \prime}$
Calculate the radius of the dam .

## QUESTION 6

$A B, C D$ and $E F$ are straight portions of a railway line which are connected by curves $B C$ and $D E$, the centres of which are $L$ and $P$ as shown in fig. 6 .

Given



Fig. 3


Fig. 4


Fig. 5


