

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF INDUSTRIAL TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING HYDRAULICS

TCW 3101

Supplementary Examination Paper
DECEMBER 2016

This examination paper consists of 3 pages
Time Allowed: 3 hours

Total Marks: 100

Special Requirements: Graph paper
Examiner's Name: DR. EUGINE MAKAYA

INSTRUCTIONS

1. Answer any four (4) questions
2. Each question carries 25 marks
3. Use of calculators is permissible

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
5.	25
TOTAL	100

Copyright: National University of Science and Technology, 2016

QUESTION 1

(a) Water at $10^{\circ} \mathrm{C}$ flows in a 6-m-wide rectangular channel at a depth of 0.55 m and a flow rate of $12 \mathrm{~m}^{3} / \mathrm{s}$.
(i) Determine the critical depth
(ii)Show whether the flow is subcritical or supercritical
(iii)Calculate the alternate depth
(15 marks)
(b) Water at $20^{\circ} \mathrm{C}$ flows in a partially full 2-m-diameter circular channel at an average velocity of $2 \mathrm{~m} / \mathrm{s}$. $\left(\rho=998 \mathrm{~kg} / \mathrm{m}^{3}, \mu=1.307 \times 10^{-3} \mathrm{~kg} / \mathrm{m}\right.$.s). If the maximum water depth is 0.5 m .
(i) Determine the hydraulic radius
(ii) Reynolds number
(iii) Determine the flow regime
(10 marks)

QUESTION 2

(a) Derive the Hagen - Poiseuille equation, $\frac{d V}{d t}=\frac{\pi \Delta P R^{4}}{128 \eta L}$
(10 marks)
(b) Two pipes connect two reservoirs (A and B) which have a height difference of 10 m . Pipe 1 has a diameter of 50 mm and length $100 . \mathrm{m}$ Pipe 2 has a diameter 1000 mm and length 100 m . Both have entry loss $\mathrm{k}_{\mathrm{L}}=0.5$ and exit loss $\mathrm{K}_{\mathrm{L}}=1.0$ and friction factor f $=0.008$. Calculate the rate of flow for each pipe
(15 marks)

QUESTION 3

(a) Explain two factors that affect minor losses in pipeline systems (4 marks)
(b) A pipe carrying water experiences a sudden reduction in the area. The inlet area is $0.002 \mathrm{~m}^{2}$ and the outlet area is $0.001 \mathrm{~m}^{2}$. The pressure at outlet is 500 kPa and the velocity is $8 \mathrm{~m} / \mathrm{s}$. the loss coefficient K is 0.4 . The density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ Calculate (i) the flow rate (ii) inlet pressure and the force acting on the section
(21 marks)

QUESTION 4

(a) Distinguish between dynamic viscosity and kinematic viscosity (4 marks)
(b) Water of density $\rho=900 \mathrm{~kg} / \mathrm{m}^{3}$, and kinematic viscosity $v=0.0002 \mathrm{~m}^{2} / \mathrm{s}$ flows upward through a pipe inclined at 40° to the horizontal. The pressure between two sections 10 m apart are $\mathrm{P}_{1}=350 \mathrm{kPa}$ and $\mathrm{P}_{2}=250 \mathrm{kPa}$. Assuming steady laminar flow;
(i) Verify that the flow is up the incline
(ii) Calculate the head loss between the two points,
(iii)If the average flow velocity is $2.7 \mathrm{~m} / \mathrm{s}$, calculate the flow rate (iv) Prove that the flow is laminar
(21 marks)

QUESTION 5

(a) With the aid of neat sketches distinguish between the centrifugal and axial flow pumps
(4 marks)
(b) Describe a method which can be used to prevent cavitation in a pump
(3 marks)
(c) A water pump was tested at a rotation of 1500rpm. The following data was obtained

Q (L/s)	0	10	20	30	40	50
$H(m)$	10	10.5	10.0	8.5	6.0	2.5
η	0.0	0.40	0.64	0.72	0.64	0.40

(Q is the quantity of flow, H is the head of water, η is efficiency)
It is proposed to use this pump to draw water from an open sump to an elevation 5.5 m above. The delivery pipe is 20 m long and 100 mm diameter and has a friction factor of 0.005

If operating at 1500 rpm, find:
(i) The maximum discharge that the pump can provide
(ii) The pump efficiency at this discharge
(iii) The input power required
(10 marks)
(d) A pump lifts water from a large tank at a rate of $30 \mathrm{~L} / \mathrm{s}$. If the input power is 10 kW and the pump is operating at an efficiency of 40%, find:
(i) The head developed across the pump
(ii) The maximum height to which it can raise water if the delivery pipe is vertical, with diameter 100 mm and friction factor $\Lambda=0.015$
(8 marks)

