	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY					
	DEPARTMENT OF CIVIL AND WATER ENGINEERING					
	STRUCTURAL ANALYSIS I					
	TCW 3102					
Supplementary Examination Paper						
July 2015						

This examination paper consists of 7 pages

Time Allowed: 3 hours

Total Marks: 100

Special Requirements:

Examiner's Name: Miss Diana Makweche

INSTRUCTIONS

- 1. Answer any four (4) questions
- 2. Each question carries 25 marks
- 3. Use of calculators is permissible

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
5.	25
TOTAL	100

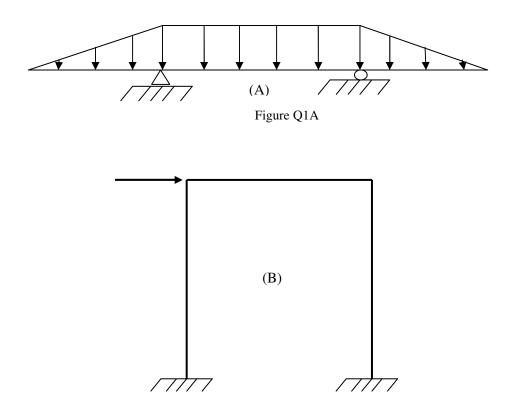
Copyright: National University of Science and Technology, 2014

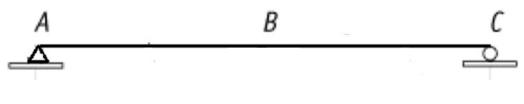
QUESTION 1

(a) Qualitatively analyse the structures in Figure Q1A for:

- (i) deflected shape
- (ii) reactions
- (iii) shear force diagram
- (iv) bending moment diagram

Clearly indicate points of interest (i.e. inflexion points, regions of zero slope, straight portions/members, zones of tension, etc) [10]




Figure Q1B

(b) In Figure Q1B above, if the horizontal force is 20kN. Find the principal values of the bending moment and shear force diagrams using any method. [15]

QUESTION 2

(a) Describe the application of influence lines in structural analysis. [3]

(b) Use the Muller-Breslau Method to sketch the influence lines for the reaction at A and shear at B of Figure Q2A. (Show relative values) [6]

(b) For the structure in Figure Q2B, find the maximum positive shear at B due to the system of loads as it moves from right to left.[16]

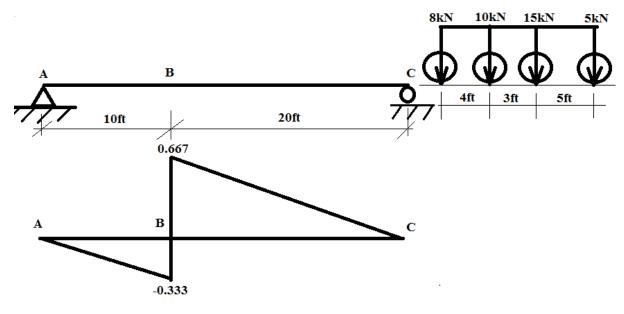


Figure Q2B

QUESTION 3

Analyse the beam shown in Figure Q3. The beam is pinned at A and sits on a roller support at B. Support C is fixed. Construct the bending moment diagram. [25]

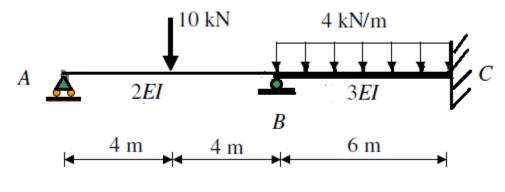


Figure Q3

QUESTION 4

Analyse the frame in Figure below. Draw the bending moment diagram. EI is constant. [25]

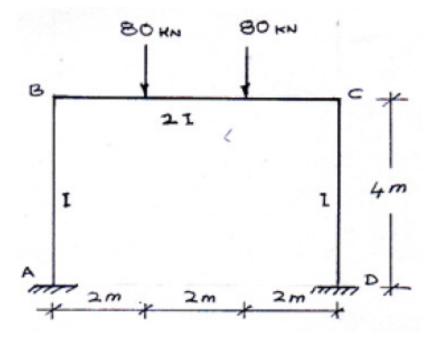
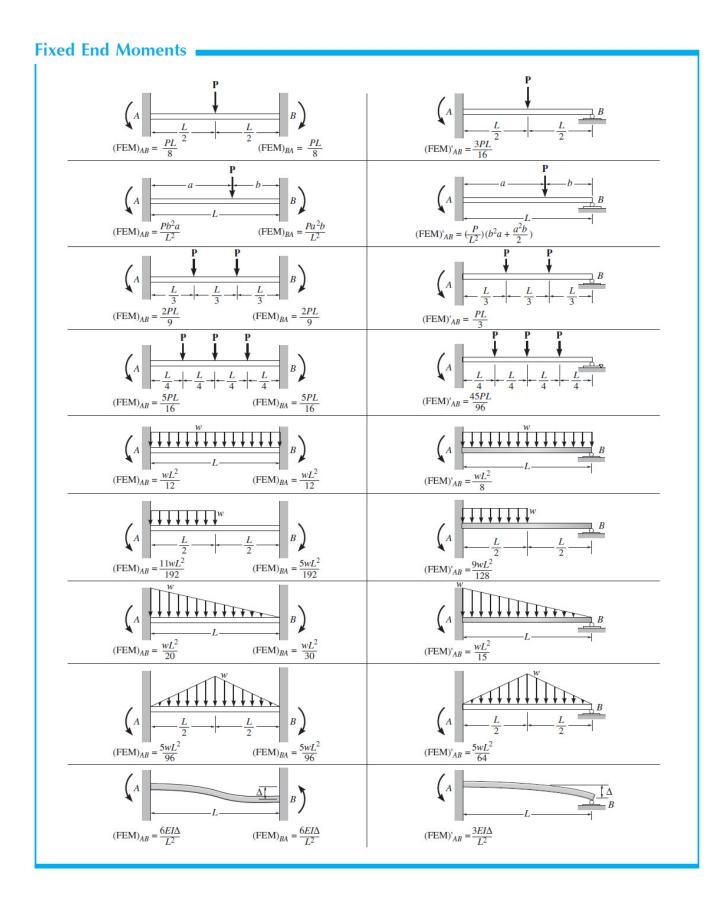



Figure Q4

		F.	F.		∎ ∎	
$\frac{L}{2}mM$	$\frac{L}{2}mM$	$\frac{L}{2}mM$	$\frac{L}{2}mM$	$\frac{L}{2}(m_L + m_R)M$	LmM	
$\frac{L}{4}m(M_L + M_R)$	$\frac{L}{6}m\left[M_L\left(1+\frac{b}{L}\right) + M_R\left(1+\frac{a}{L}\right)\right]$	$\frac{L}{6}m(M_L+2M_R)$	$\frac{L}{6}m(2M_L+M_R)$	$\frac{L}{6} [m_L (2M_L + M_R) \\ + m_R (M_L + 2M_R)]$	$\frac{L}{2}m(M_L + M_R)$	
$\frac{L}{4}mM$	$\frac{L}{6}m\left(1+\frac{b}{L}\right)M$	$\frac{L}{6}mM$	$\frac{L}{3}mM$	$\frac{L}{6}(2m_L+m_R)M$	$\frac{L}{2}mM$	
$\left(\frac{3L^2-4c^2}{12dL}\right)LmM$	$\frac{(L^2 - a^2 - c^2)}{6bc}LmM$ only for $a < c$	$\frac{L}{6}m\left(1+\frac{c}{L}\right)M$	$\frac{L}{6}m\left(1+\frac{d}{L}\right)M$	$\frac{L}{6} \left[m_L \left(1 + \frac{d}{L} \right) + m_R \left(1 + \frac{c}{L} \right) \right] M$	$\frac{L}{2}mM$	
$\frac{L}{3}mM$	$\left(\frac{3L^2-4a^2}{12bL}\right)LmM$	$\frac{L}{4}mM$	$\frac{L}{4}mM$	$\frac{L}{4}(m_L + m_R)M$	$\frac{L}{2}mM$	и
$\frac{7L}{48}mM$	$\frac{L}{12}m\left(1+\frac{b}{L}+\frac{b}{L^2}\right)M$	$\frac{L}{12}mM$	$\frac{L}{4}mM$	$\frac{L}{12}(3m_L + m_R)M$	$\frac{L}{3}mM$	L
$\frac{17L}{48}mM$	$\frac{L}{12}m\left(5-\frac{a}{L}\right)$ $-\frac{a^2}{L^2}M$	$\frac{L}{4}mM$	$\frac{5L}{12}mM$	$\frac{L}{12}(5m_L + 3m_R)M$	$\frac{2L}{3}mM$	L.

To Evaluate Product Integrals of the Form: $\int_0^L mMdx$

TCW 3102

Slope Deflection Equations

$$M_N = 2Ek(2\theta_N + \theta_F - 3\psi) + (FEM)_N$$
$$M_N = 3Ek(\theta_N - \psi) + (FEM)_N$$