	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING STRUCTURAL ANALYSIS I
	TCW 3102
Examination	Paper
November /D	ecember 2015

This examination paper consists of 7 pages

Time Allowed: 3 hours

Total Marks: 100

Special Requirements:

Examiner's Name: Miss Diana Makweche/ Engineer Noreen Dube

INSTRUCTIONS

- 1. Answer any four (4) questions
- 2. Each question carries 25 marks
- 3. Use of calculators is permissible

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
5.	25
TOTAL	100

Copyright: National University of Science and Technology, 2014

QUESTION 1

- (i) Given the following deflected shapes and point loads in Figure Q1A:
 - (a) Draw the reactions in their correct directions
 - (b) Sketch the qualitative bending moment, shear force and axial force (where relevant) diagrams. [13]

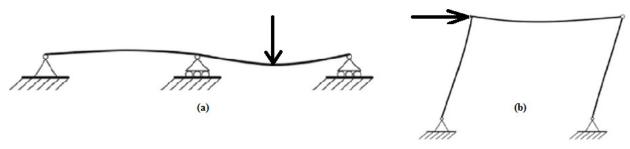
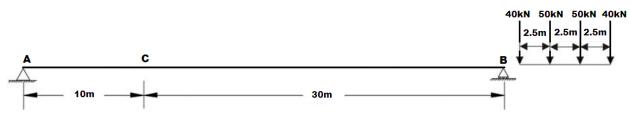
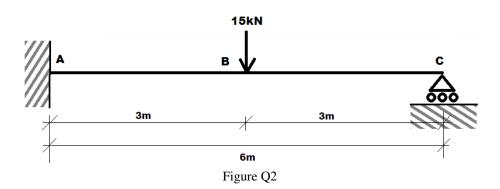
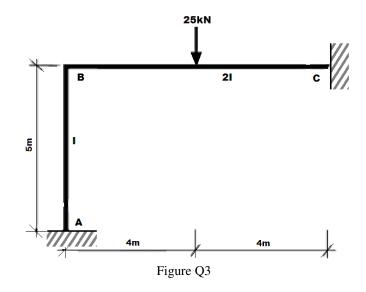



Figure Q1A


(ii) The beam is loaded with concentrated loads which are moving from right to left as shown in Figure Q1B. Calculate the maximum moment at the section C. [12]

QUESTION 2


- (i) Figure Q2 shows a propped cantilever fixed at A and supported on a roller at C. It carries a point load of 15kN at mid-span. By taking the support at C as the redundant reaction,
 - (a) Determine the value of the support reactions
 - (b) Sketch the shear force and bending moment diagrams. [25]

QUESTION 3

The frame in Figure Q3 is has constant Modulus of Elasticity, E, but varying values of moment of inertia, I, as shown.

- (i) Sketch the deflected shape of the frame under the action of the load.
- (ii) Analyse the frame using the Moment Distribution Method.
- (iii) Determine the support reactions and sketch the bending moment diagram. [25]

QUESTION 4

Determine all the member forces and support reactions for the truss in Figure Q4. Take $E = 205kN/mm^2$ and $A = 175mm^2$ for all members.

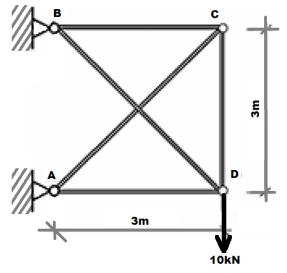


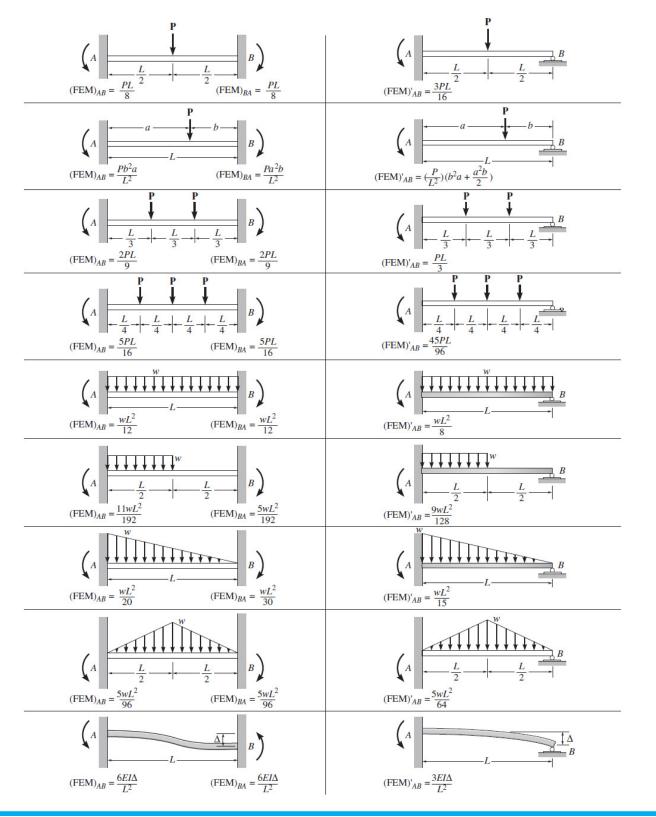
Figure Q4

QUESTION 5

The frame in Figure Q5 sways under the action of the applied loading.

- (i) Sketch the deflected shape of the frame.
- (ii) Taking EI as constant, analyse the structure and sketch the bending moment diagram.

[25]


Figure Q5

12 12 12 12		F.			E F		
$\frac{L}{2}mM$	$\frac{L}{2}mM$	$\frac{L}{2}mM$	$\frac{L}{2}mM$	$\frac{L}{2}(m_L + m_R)M$	LmM	M L	
$\frac{L}{4}m(M_L+M_R)$	$\frac{L}{6}m\left[M_L\left(1+\frac{b}{L}\right) + M_R\left(1+\frac{a}{L}\right)\right]$	$\frac{L}{6}m(M_L+2M_R)$	$\frac{L}{6}m(2M_L+M_R)$	$\frac{L}{6} [m_L (2M_L + M_R) + m_R (M_L + 2M_R)]$	$\frac{L}{2}m(M_L+M_R)$		5
$\frac{L}{4}mM$	$\frac{L}{6}m\left(1+\frac{b}{L}\right)M$	$\frac{L}{6}mM$	$\frac{L}{3}mM$	$\frac{L}{6}(2m_L+m_R)M$	$\frac{L}{2}mM$	L L	
$\left(\frac{3L^2-4c^2}{12dL}\right)LmM$	$\frac{(L^2 - a^2 - c^2)}{6bc}LmM$ only for a < c	$\frac{L}{6}m\left(1+\frac{c}{L}\right)M$	$\frac{L}{6}m\left(1+\frac{d}{L}\right)M$	$\frac{L}{6} \left[m_L \left(1 + \frac{d}{L} \right) + m_R \left(1 + \frac{c}{L} \right) \right] M$	$\frac{L}{2}mM$	L d d	
$\frac{L}{3}mM$	$\left(\frac{3L^2-4a^2}{12bL}\right)LmM$	$\frac{L}{4}mM$	$\frac{L}{4}mM$	$\frac{L}{4}(m_L + m_R)M$	$\frac{L}{2}mM$	м	
$\frac{7L}{48}mM$	$\frac{L}{12}m\left(1+\frac{b}{L}+\frac{b^2}{L^2}\right)M$	$\frac{L}{12}mM$	$\frac{L}{4}mM$	$\frac{L}{12}(3m_L + m_R)M$	$\frac{L}{3}mM$	L	
$\frac{17L}{48}mM$	$\frac{L}{12}m\left(5-\frac{a}{L}\right)$ $-\frac{a^2}{L^2}M$	$\frac{L}{4}mM$	$\frac{5L}{12}mM$	$\frac{L}{12}(5m_L + 3m_R)M$	$\frac{2L}{3}mM$	M L	

To Evaluate Product Integrals of the Form: $\int_0^L mMdx$

TCW 3102

Fixed End Moments

Slope Deflection Equations

$$M_N = 2Ek(2\theta_N + \theta_F - 3\psi) + (FEM)_N$$
$$M_N = 3Ek(\theta_N - \psi) + (FEM)_N$$