

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF CIVIL AND WATER ENGINEERING

STRUCTURAL ANALYSIS I

TCW 3102

Supplementary Examination Paper

JULY 2016

This examination paper consists of 6 pages

Time Allowed: 3 hours

Total Marks: 100

Special Requirements:

Examiner's Name: Miss Diana Makweche/ Engineer Noreen Dube

INSTRUCTIONS

1. Answer all questions

2. Each question carries 25 marks

3. Use of calculators is permissible

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
TOTAL	100

Copyright: National University of Science and Technology, 2014

QUESTION 1

(i) Given the deflected shapes of the structures in Figure Q1A, sketch the qualitative shear force and bending moment diagrams. [10]

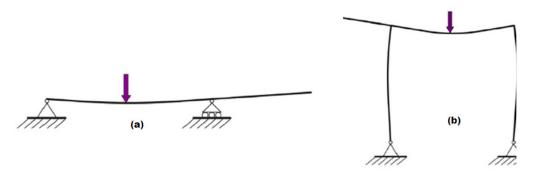
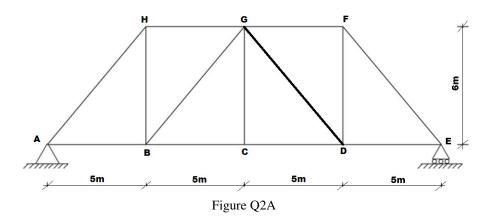
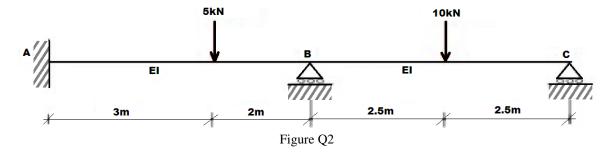
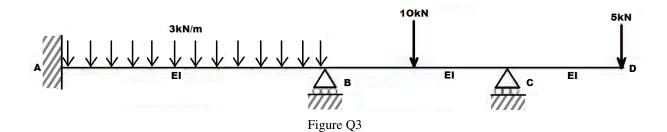



Figure Q1A


- (ii) Figure Q1B shows a simply supported truss.
 - (a) Construct the influence line for member GD.
 - (b) Is member GD a primary or secondary member?

[15]


QUESTION 2

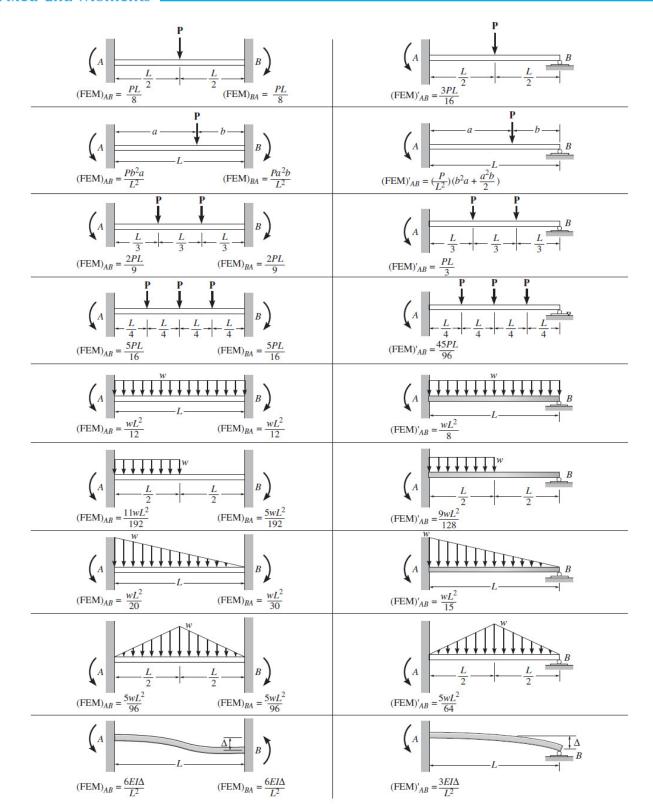
(i) Calculate the support reactions for the beam shown in Figure Q2 using the Flexibility Method. EI is constant. [25]

QUESTION 3

(i) Using the Slope Deflection Method, draw the bending moment diagram for the continuous beam in Figure Q3. [25]

QUESTION 4

Analyse the beam using the Stiffness Method. EI is constant.


Figure Q4

[25]

P 172 B $\frac{L}{2}(m_L + m_R)M$ × $\frac{L}{2}mM$ $\frac{L}{2}mM$ $\frac{L}{2}mM$ $\frac{L}{2}mM$ LmM $\frac{L}{6}[m_L(2M_L + M_R) + m_R(M_L + 2M_R)]$ $\frac{L}{6}m\left[M_L\left(1+\frac{b}{L}\right)\right] + M_R\left(1+\frac{a}{L}\right)$ $\frac{L}{6}m(M_L+2M_R)$ $\frac{L}{6}m(2M_L+M_R)$ $\frac{L}{2}m(M_L + M_R)$ $\frac{L}{4}m(M_L+M_R)$ -K $\frac{L}{6}(2m_L + m_R)M$ $\frac{L}{6}m\left(1+\frac{b}{L}\right)M$ $\frac{L}{4}mM$ $\frac{6}{4}$ mM $\frac{L}{3}mM$ $\frac{L}{2}mM$ $\frac{L}{6} \left[m_L \left(1 + \frac{d}{L} \right) + m_R \left(1 + \frac{c}{L} \right) \right] M$ $\frac{(L^2-a^2-c^2)}{LmM}$ $\left(\frac{3L^2-4c^2}{12dL}\right)LmM$ $\frac{L}{6}m\left(1+\frac{d}{L}\right)M$ $\frac{L}{6}m\left(1+\frac{c}{L}\right)M$ only for a < c 6bc $\frac{L}{2}mM$ $\frac{L}{4}(m_L + m_R)M$ $\left(\frac{3L^2 - 4a^2}{12bL}\right)$ 172 $\frac{L}{2}mM$ $\frac{L}{3}mM$ $\frac{L}{4}mM$ $\frac{L}{4}mM$ $\frac{L}{12}(3m_L + m_R)M$ $\frac{L}{12}m\left(1+\frac{b}{L}\right)$ $\frac{7L}{48}$ mM $\frac{L}{12}mM$ $\frac{L}{4}mM$ $\frac{L}{3}mM$ $\frac{L}{12}m\left(5 - \frac{a}{L}\right)$ $-\frac{a^2}{L^2}M$ $\frac{L}{12}(5m_L + 3m_R)M$ 17L 48 mM 5L 12 mM $\frac{2L}{3}$ mM $\frac{L}{4}mM$ r

To Evaluate Product Integrals of the Form: $\int_0^L mMdx$

Slope Deflection Equations

$$M_N = 2Ek(2\theta_N + \theta_F - 3\psi) + (FEM)_N$$

$$M_N = 3Ek(\theta_N - \psi) + (FEM)_N$$