	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING STRUCTURAL ANALYSIS I TCW 3102
Examination	Paper
December 20	16
	This examination paper consists of 8 pages

Time Allowed: 3 hours

Total Marks: 100

Special Requirements: None

Examiner's Name: Miss Diana Makweche/ Mrs Faith Makwiranzou

INSTRUCTIONS

- 1. Answer any four (4) questions. Credit will not be given for additional questions attempted.
- 2. Each question carries 25 marks.
- 3. Where relevant, use the solution method prescribed.

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
5.	25
TOTAL	100

Copyright: National University of Science and Technology, 2016

(i) Analyse the beam in Figure Q1A for reactions, bending moment diagram and shear force diagram.
 [6]

[6]

(ii) Figure Q1B shows two frames. Sketch the deflected shape of each and explain the differences observed.

- (iii) Construct the influence line for truss member CH in the truss of Figure Q1C. (Use the Method of Sections to obtain the truss member forces). [10]
- (iv) What is the maximum compressive force in the member due to a uniformly distributed load of intensity 10kN/m? [3]

The propped cantilever in Figure Q2A experiences a settlement of 12mm at support B under the action of a uniformly distributed load of 15kN/m.

(i) Using the Flexibility Method, determine the reactions. [15] Take $E = 200GPa (200x10^6 kN/m^2)$ and $I = 80x10^6 mm^4$.

(ii) A statically indeterminate truss is to be analysed. Using the information provided in Figure Q2B, construct a table and calculate the truss member forces. $A = 200mm^2$ and $E = 200GPa (200x10^6 kN/m^2)$. [10]

QUESTION 3

Figure Q3 shows a frame of constant flexural rigidity (EI).

(i) Sketch the deflected shape, and clearly indicate the angles through which the joints rotate.

(ii)	Find the magnitude of the fixed end moments.	[2]
(iii)	Determine the member end moments using the Slope Deflection Method.	[10]
(iv)	Calculate the reactions.	[4]
(v)	Construct the bending moment and shear force diagrams.	[6]

The beam of Figure Q4 is fully fixed at the end supports A and D; and continuous over internal supports B and C. $E = 200GPa (200x10^{6}kN/m^{2})$.

(i)	Calculate the stiffness factors.	[3]
(ii)	Determine the distribution factors.	[3]
(iii)	Find the fixed end moments.	[2]
(iv)	Use the Moment Distribution Method to determine the end moments in each span.	[7]
(v)	Determine the reactions.	[4]
(vi)	Draw the bending moment and shear force diagrams.	[6]

(vi) Draw the bending moment and shear force diagrams.

Figure Q5 shows a continuous beam that is fixed at one end, A, and sits on rollers at B and C. Using two beam elements of equal length

(i)	Determine the equivalent nodal forces at the end of each element	[4]
(1)		L ' J
(11)	Construct the stiffness matrix for each element.	[4]
(iii)	Assemble the global stiffness matrix.	[5]
(iv)	Reduce the global system of equations by applying the boundary conditions.	[4]
(v)	Calculate the unknown displacements and the forces at the ends of the elements and,	
	hence, the reactions.	[8]

Integral Table

15 15 15		L.	F.		E E		
$\frac{L}{2}mM$	$\frac{L}{2}mM$	$\frac{L}{2}mM$	$\frac{L}{2}mM$	$\frac{L}{2}(m_L + m_R)M$	LmM	M	
$\frac{L}{4}m(M_L + M_R)$	$\frac{L}{6}m\left[M_L\left(1+\frac{b}{L}\right) + M_R\left(1+\frac{a}{L}\right)\right]$	$\frac{L}{6}m(M_L+2M_R)$	$\frac{L}{6}m(2M_L+M_R)$	$\frac{L}{6} [m_L (2M_L + M_R) + m_R (M_L + 2M_R)]$	$\frac{L}{2}m(M_L + M_R)$		c
$\frac{L}{4}mM$	$\frac{L}{6}m\left(1+\frac{b}{L}\right)M$	$\frac{L}{6}mM$	$\frac{L}{3}mM$	$\frac{L}{6}(2m_L + m_R)M$	$\frac{L}{2}mM$, ⊥ , M	
$\left(\frac{3L^2-4c^2}{12dL}\right)LmM$	$\frac{(L^2 - a^2 - c^2)}{6bc}LmM$ only for $a < c$	$\frac{L}{6}m\left(1+\frac{c}{L}\right)M$	$\frac{L}{6}m\left(1+\frac{d}{L}\right)M$	$\frac{L}{6} \left[m_L \left(1 + \frac{d}{L} \right) + m_R \left(1 + \frac{c}{L} \right) \right] M$	$\frac{L}{2}mM$	L M	
$\frac{L}{3}mM$	$\left(\frac{3L^2-4a^2}{12bL}\right)LmM$	$\frac{L}{4}mM$	$\frac{L}{4}mM$	$\frac{L}{4}(m_{L}+m_{R})M$	$\frac{L}{2}mM$	м	
$\frac{7L}{48}mM$	$\frac{L}{12}m\left(1+\frac{b}{L}+\frac{b^2}{L^2}\right)M$	$\frac{L}{12}mM$	$\frac{L}{4}mM$	$\frac{L}{12}(3m_L + m_R)M$	$\frac{L}{3}mM$	L	
$\frac{17L}{48}mM$	$\frac{L}{12}m\left(5-\frac{a}{L}\right)$ $-\frac{a^2}{L^2}M$	$\frac{L}{4}mM$	$\frac{5L}{12}mM$	$\frac{L}{12}(5m_L + 3m_R)M$	$\frac{2L}{3}mM$	M L	

To Evaluate Product Integrals of the Form: $\int_0^L mMdx$

TCW 3102

(Caprani C- Lecture Notes)

Fixed End Moments

Slope Deflection Equations

$$M_N = 2Ek(2\theta_N + \theta_F - 3\psi) + (FEM)_N$$

$$M_N = 3Ek(\theta_N - \psi) + (FEM)_N$$

Beam Stiffness Matrix

$$\begin{cases} f_{1y} \\ m_1 \\ f_{2y} \\ m_2 \\ \end{cases} = \frac{EI}{L^3} \begin{bmatrix} 12 & 6L & -12 & 6L \\ 6L & 4L^2 & -6L & 2L^2 \\ -12 & -6L & 12 & -6L \\ 6L & 2L^2 & -6L & 4L^2 \end{bmatrix} \begin{cases} v_1 \\ \phi_1 \\ v_2 \\ \phi_2 \\ \end{cases}$$

Equivalent Nodal Forces

		m_1		
Equivale	nt Nodal Forces for Diffe	erent Load Types	Positive nodal force c	conventions f_{2y}
f_{1y}	m_1	Loading case	f_{2y}	m_2
$\frac{-P}{2}$	$\frac{-PL}{8}$	$\frac{L}{2} \qquad P \qquad \frac{L}{2}$	$\frac{-P}{2}$	$\frac{PL}{8}$
$\frac{-Pb^2(L+2a)}{L^3}$	$\frac{-Pab^2}{L^2}$	$\begin{array}{c c} a & \downarrow^{P} & b \\ \hline & L \\ (a < b) \end{array}$	$\frac{-Pa^2(L+2b)}{L^3}$	$\frac{Pa^2b}{L^2}$
- <i>P</i>	$-\alpha(1-\alpha)PL$	$ \begin{array}{c} P \\ P \\ \alpha L \\ L \\ L \end{array} $	- <i>P</i>	$\alpha(1-\alpha)PL$
$\frac{-wL}{2}$	$\frac{-wL^2}{12}$		$\frac{-wL}{2}$	$\frac{wL^2}{12}$
$\frac{-7wL}{20}$	$\frac{-wL^2}{20}$		$\frac{-3wL}{20}$	$\frac{wL^2}{30}$

(Logan D L- A First Course in the Finite Element Method)