NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONOURS) DEGREE PART III FIRST SEMESTER EXAMINATION- DECEMBER 2005 DESIGN OF STRUCTURES I– TCW 3103

INSTRUCTION

Answer All Question

Time: Four hours Total Marks : **100**

Open Book Examination.

QUESTION ONE

A floor plan of a building is shown in Figure 1.0. The loading on the slab is as follows Screed, Finish, Partitions 2.0 kN/mm² Imposed load 3.0 kN/mm² The characteristic material strengths are $f_{cu} = 30$ N/mm²; $f_y = 460$ N/mm² Take density of reinforced concrete as 24.0 kN/m³ Assume soil bearing pressure as 150 kN/mm² Design the following elements:

(a) The slab
(b) Beam B/1-2
(c) Column B/1
(d) Foundation for column B/1

Show complete reinforcement details of any one element.

40 Marks

QUESTION TWO

A simply supported steel beam of 6.0m span is required to carry a uniform dead load of 40 kN/m and an imposed load of 20 kN/m. The floor slab system provides full restraint of the beam

If a 457x151xUB60 of Grade 43 steel is available for this purpose, check its adequacy in terms of bending, shear and deflection. Take Modulus of Elasticity $E = 205 \text{ kN/mm}^2$

Section properties are

 $S_x = 1284 \text{ cm}^3$; $Z_x = 1120 \text{ cm}^3$; $I_x = 25464 \text{ cm}^4$

20 Marks

QUESTION THREE

A Grade 43 steel column having 6.0m effective length for both axes is to carry pure axial loads from the floor above. If a 254 x 254 UC 73 is available, check the ultimate load that can be imposed on the column. The self weight of the column may be neglected.

Section properties are

A = 92.9 cm²; r = 6.46 cm

20 Marks

QUESTION FOUR

Design the joists of a timber floor carrying the following loads		
(a) Flooring is tongue and groove	0.11 kN/m ²	
(b) Ceiling	0.20 kN/m²	
(c)Self weight of joist	0.12 kN/m²	
Imposed load	1.5 kN/m^2	

Assume the following

Strength Class of timber SC 3	3	Modification Factors:	
For SC 3 Grade		K3, duration of	loading 1.0
Bending stress parallel to grain = 5.3 N/mm^2		K8 Load sharing system 1.1	
Shear stress parallel to grain = 0.67 N/mm^2		K7 Depth factor	
Modulus of Elasticity E	= 8800 N/mm ²	for $d = 225$	1.032
Long term loading		for $\mathbf{d} = 200$	1.046

Span of Joist = 4.0m Spacing of joists = 400 mm c/c

20 Marks