- Stree			
	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY		
	FACULTY OF INDUSTRIAL TECHNOLOGY		
	DEPARTMENT OF CIVIL AND WATER ENGINEERING		
	TRANSPORTATION ENGINEERING & PLANNING I		
	TCW 3105		
Supplementary Examinations Paper			
JULY 2016			
	This examination paper consists of 3 pages		

Time Allowed: 3 Hours

Total Marks: 100

Examiner's Name: T.C. Mdlongwa

INSTRUCTIONS

- 1. Answer all questions.
- 2. Each question carries 25marks.
- 3. Use of calculators is permissible

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
TOTAL	100

Page 1 of 4

Copyright: National University of Science and Technology, 2014

QUESTION 1.

a) List the major disciplines of transportation engineering and briefly discuss each one of the disciplines.

[8marks]

[8marks]

- b) Classify the different roles of transportation and discuss the importance of each.
- c) Define the following terms in relation to transportation engineering:
 - i. Average daily traffic (ADT),
 - ii. Annual average daily traffic (AADT),
 - iii. Reaction Time,
 - iv. Right of Way (ROW), provide neat sketch.

[5marks]

d) Equally important as the consideration of horizontal alignment is that of the facility's vertical alignment. List at least four factors that influence the vertical alignment of highways.

[4marks]

QUESTION 2.

a) The following VPI's are on a road:

VPI	SV (m)	Level (m)
1	330	141.8
2	720	158.6
3	1200	161.2

Given that curve length is 200m at VPI 2, calculate the levels on the curve at 20m intervals

[14marks]

b) A horizontal curve is designed with a 600 m radius and is known to have a tangent length of 52 m. The PI is at station 200+00. Determine the stationing of the PT.

NOTE: [100m stations are used]

[8marks]

c) Distinguish between the terms mobility and accessibility citing appropriate examples in each case. Provide a sketch as part of your solution.

[3 marks]

Page 2 of 4

Copyright: National University of Science and Technology, 2014

QUESTION 3

QULJ				
a)	What is a pavement?			
		[1mark]		
b)	What are the functions of a pavement?			
		[4marks]		
c)				
d)	Draw a typical flexible pavement structure and identify each layer which plays a role in			
	carrying the traffic loads.			
		[5marks]		
e)	For a rural road located in Matabeleland North	n Province the following information is available		
	for the design of a flexible pavement:			
	AADT	2400		
	Directional split (2-way DF)	50/50		
	Traffic Growth Rate	2%		
	Proportion of Heavy Vehicles	15%		
	Average Weight of Heavy Vehicle	1.5ESA's		
	Design Life	15years		
	Subgrade Strength, CBR 3.5%			
	Determine the pavement structure. Draw the	pavement structure if a 30mm thick Hot Mix		
	Asphalt surface course is to be provided.			
		[15marks]		
QUES.	TION 4.			

- a) List and define three sight distances as discussed during the lectures. Use sketches where necessary.
- b) Show that the Stopping Sight Distance (SSD) is given by the equation

$$SSD = v \cdot t + \frac{v^2}{2gf}$$

Define each of the characters in the equations, giving their units of measurement.

[8marks]

c) A driver of a vehicle applied brakes and barely avoided hitting an obstacle on a roadway. The vehicle left skid marks of 53m (Hint: skid marks indicating the distance moved in stopping vehicle in this scenario). Assuming f=0.35, determine whether the driver was in violation of the 60km/h speed limit at the location if he was travelling on level roadway.

[6marks]

d) Give at least four (4) considerations and factors influencing the horizontal and vertical alignment for a highway.

[4marks]

END OF EXAMINATION PAPER

Page 3 of 4

Copyright: National University of Science and Technology, 2014

[7marks]

ADDITIONAL INFORMATION FOR STUDENTS

$$N_{DT} = 365 \times AADT \times DF \times \% \frac{HV}{100} \times LDF \times CGF \times N_{HVAG}$$
$$CFG = \frac{(1 - 0.01R)^{P} - 1}{0.01}$$

DESIGN CHART FOR GRANULAR PAVEMENTS WITH THIN BITUMINOUS SURFACING

Page 4 of 4

Copyright: National University of Science and Technology, 2014