NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY
 DEPARTMENT OF CIVIL AND WATER ENGINEERING
 BACHELOR OF ENGINEERING (HONOURS) DEGREE
 PART III SECOND SEMESTER EXAMINATIONS APRIL/MAY 2006 IRRIGATION SYSTEMS DESIGN TCW 3204

INSTRUCTIONS

Answer any four questions.
Illustrate your answers with clearly well labeled diagrams
were applicable.
Total Marks 100
Time 3 hours

QUESTION 1

(a) Differentiate between soil moisture tension and soil water potential
(b) "Irrigation is a systematically developed knowledge, based on long term observations and experiments of handling available sources of water for economic growth." Discuss.
[20 marks]

QUESTION 2

2(a) Define the following terms:
(ii) Field capacity
[2 marks]
(iii) Osmotic potential
[2 marks]
(b) A schematic illustration to measure the soil hydraulic conductivity is shown in Fig. Q2.1. The constant discharge through the system is $0.021 \mathrm{~m}^{3} / \mathrm{min}$.
Compute:
(i) Pressure potential [3 marks]
(ii) Hydraulic conductivity of the soil sample [3 marks]
(iii) Establish the direction of flow [3 marks]
(c) The filtration capacity of a soil is given in Table Q2.1 and also the following design parameters are applicable to a maize crop:

Root zone	$=1000 \mathrm{~mm}$
Field capacity	$=35 \%$
Permanent wilting point	$=15 \%$
Allowable level of moisture depletion	$=60 \%$
Distribution pattern efficiency	$=87 \%$

(i) Derive a fitting equation for the infiltration data.
(ii) Compute the irrigation interval
(iii) Determine the time of irrigation to apply the net depth

Table Q2.1

Time (min)	2	3.6	6.4	11.2	20	36	64	113	200
Depth of infiltration (mm)	0.5	0.7	1.0	1.5	2	3.1	4.6	6.5	9.8

Fig. Q2.1

QUESTION 3

Using the FAO Modified Penman's equation, determine the $E T_{\text {crop }}$ given the following design parameters. Additional design data is in Table Q3.1 and Table Q3.2.
Average design wind speed at height of 10.5 m
Minimum temperature

$$
=10 \mathrm{~km} / \mathrm{hr}
$$

Maximum temperature
$=15^{\circ} \mathrm{C}$
Maximum relative humidity
Minimum relative humidity
Incoming short wave radiation
Outgoing long wave radiation
Coefficient of albedo
Altitude above sea level
$=28^{\circ} \mathrm{C}$
Day time wind speed
Night wind speed
Crop coefficient
=45\%
$=3 \mathrm{~cm} /$ day
$=1.5 \mathrm{~cm} /$ day
$=0.25$
$=2050 \mathrm{~m}$
$=300 \mathrm{~km} / \mathrm{day}$
$=155 \mathrm{~km} /$ day
$=1.02$
[11 marks]
(b) A two sized lateral line has 12 sprinklers on the first section and 6 sprinklers on the second section. Each sprinkler on the first section has a discharge of $0.95 \mathrm{~L} / \mathrm{s}$, whilst those on the second section, each sprinkler has a discharge of $0.78 \mathrm{~L} / \mathrm{s}$. On the first section, the first sprinkler is located at one-half the sprinkler spacing and on the second section, the first
sprinkler is at full spacing. The remaining sprinklers are all spaced at 12 m , and the respective diameters are of the two sections are 120 mm and 90 mm . The lateral is downhill at a slope of 0.0045 . Compute the friction head losses in the lateral. Assume $\mathrm{C}=135$; $\mathrm{m}=1.852 ; \mathrm{n}=1.167$ and $\mathrm{K}=1.22 \times 10^{2}$.
[14 marks]

QUESTION 4

(a) The following design parameters are applicable to the design of a level border.

Additional design data is given in Table Q4.1.

Manning's roughness coefficient	$=0.15$
Slope	$=0.003$
Net depth of application	$=105 \mathrm{~mm}$
Distribution pattern efficiency	$=0.85$
Application pattern efficiency	$=100 \%$
Length of border	$=300 \mathrm{~m}$
Intake family coefficients	$a=1.13$
	$b=0.742$
	$c=7$

Compute: (i) Net opportunity time
(i) Recession lag time
(ii) Time to cut flow
(iii) Depth of water in the border
(b) With aid of a sketch describe the time-distance relationships of water during application and infiltration into the soil for surface irrigation.

QUESTION 5

(a) A lateral line running up-hill at a slope of 0.006 has an operating pressure of 250 kPa . The distance between the first and the last sprinkler on the lateral is 550 m . The sprinklers as spaced at 18 m and the first sprinkler is at half the spacing and all the sprinklers have a discharge of 0.45 liters per second. Assuming $C=135 ; m=1.852$ and $\mathrm{n}=1.167$, compute:
(i) Maximum allowable friction head loss
(ii) Pipe line diameter
[7 marks]
(b) FAO Modified Penman's method is now recommended as the standard method for the definition and computation of the reference evapotranspiration. Discuss. [15 marks]

QUESTION 6

(a) Determine the length of an emitter and also the approximate length of the lateral given the following design criteria:

Plant water requirement Irrigation cycle
Application efficiency
Number of emitters per plant
Emitter operation pressure head
Inside diameter of emitter
Kinematic viscosity of water
Lateral diameter
$=10$ liters per day
$=12$ hrs after every 7 days
=92\%
$=2$
$=10 \mathrm{~m}$
$=1 \mathrm{~mm}$
$=1.0 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$
$=15 \mathrm{~mm}$

Hazen Williams coefficient	$=130$
Emitter flow function	$=0.72\left[\frac{P}{\gamma}\right]^{0.81}$
Desired coefficient of uniformity	$=91 \%$
Proportionality factor that characterizes flow regime	$=2.6$
Ground slope (lateral sloping up-hill)	$=0.4 \%$
Emitter flow variation for the desired CU	$=15 \%$

[13 marks]
(b) The various layouts for sprinkler irrigation are shown in Fig. Q6.1. Outline the various factors which govern or affect each system.
[12 marks]

Useful formulae

$$
\begin{aligned}
& H_{f}=\frac{K\left(\frac{Q_{1}}{C}\right)^{1.852}}{D_{1}^{4.87}} E T_{o}=c\left[\left(\frac{\Delta}{\Delta+\gamma}\right) R_{n}+\frac{\gamma}{\Delta+\gamma} f(u) \Delta e\right] h_{f}=6.377 f L \frac{Q^{2}}{D^{5}} \\
& P_{o}=\left(\frac{P_{o}}{P_{n}}\right) \gamma\left[\frac{q_{n}}{K_{e}}\left(2-\frac{q_{o}}{q_{n}}\right)\right]^{\frac{1}{x}} L_{u}=\frac{6 \times 10^{4}\left(Q_{u} T_{t}\right)}{a \frac{\left(T_{t}\right)^{b}}{1+b}+c+1798 n^{3 / 8} Q_{u}^{9 / 16} T_{t}^{3 / 16}} F=\frac{1}{m+1}+\frac{1}{2 N}+\frac{(m-1)^{0.5}}{6 N^{2}} \\
& F=\frac{2}{2 N-1}\left\{\frac{1}{m+n}+\frac{\left(m-1^{0.5}\right)}{6 N^{2}}\right\} T_{r l}=\frac{\left(Q_{u}\right)^{0.2} n^{1.2}}{120\left[S+\frac{0.0094 n Q_{u}^{0.175}}{T_{n}^{0.88} S^{0.5}}\right]^{1.6} \quad Q=\frac{0.00167 i_{n} L}{\left(T_{n}-T_{r j}\right) e_{d} e_{a}}} \\
& E T_{o}=\frac{\Delta}{\Delta+\gamma}\left(R_{n}-G\right)+\frac{\gamma}{\gamma+\Delta} f(u) \Delta e \quad q=0.11384(A)\left[2 g\left(\frac{\sqrt{H} D}{f L}\right)\right]^{0.5} \\
& q=0.11384 A\left(2 g\left(\frac{H D}{f L}\right)\right]^{0.5} \quad E T_{o}=c\left[\omega R_{n}++(1-\omega) f(u)\left(e_{s}-e_{a}\right)\right] \\
& e_{s}=6.1078 e^{x}, \mathrm{mb} \\
& x=\frac{19.8374 T_{\text {mean }}-0.00831 T_{\text {mean }}^{2}}{T_{\text {mean }}+273.16} \quad f=3.42 \times 10^{-5} R_{e}^{0.85} \quad \gamma=\frac{e_{s}-e_{a}}{T_{d r y}-T_{w e t}} f=\frac{64}{R_{e}} \\
& \Delta=2\left[0.00738 T_{\text {nean }}+0.8072\right]^{7}-0.00116 \\
& H_{f}=H_{f}\left(L_{1}+L_{2}, D_{1}\right)-H_{f}\left(L_{2}, D_{1}\right)+H_{f}\left(L_{2}, D_{2}\right)=H_{f}^{0.25}\left(L_{1}, D_{1}\right)+H_{f}\left(L_{2}, D_{2}\right) \\
& 1 \\
& \sqrt{f}
\end{aligned}
$$

Table Q3.1 Values of Weighting Factor (I-W) for the Effect of Wind and Humidity on ETo at Different Temperatures and Altitudes

Temp $\left({ }^{\circ} \mathrm{C}\right)$	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40
altitude (m)																				
0	.57	.54	.51	.48	.45	.42	.39	.36	.34	.32	.29	.27	.25	.23	.22	.20	.19	.17	.16	.15
500	.56	.52	.49	.46	.43	.40	.38	.35	.33	.30	.28	.26	.24	.22	.21	.19	.18	.16	.15	.12
1000	.54	.51	.48	.45	.42	.39	.36	.32	.31	.29	.27	.25	.23	.21	.20	.18	.17	.15	.14	.13
2000	.51	.48	.45	.42	.39	.36	.32	.31	.29	.27	.25	.23	.21	.19	.18	.16	.15	.14	.13	.12
3000	.48	.45	.42	.39	.36	.34	.31	.29	.27	.25	.23	.21	.19	.18	.16	.15	.14	.13	.12	.11
4000	.46	.42	.39	.36	.34	.31	.29	.27	.25	.23	.21	.19	.18	.16	.15	.14	.13	.12	.11	.10

Table Q3.2: Adjustment factor in FAO modified Penman equation

	$\mathrm{RH}_{\text {max }}=30 \%$				$\mathrm{RH}_{\max }=60 \%$				$\mathrm{RH}_{\max }=90 \%$			
$\mathrm{R}_{\mathrm{s}}, \mathrm{mm} / \mathrm{d}$	3	6	9	12	3	6	9	12	3	6	9	12
	$\left(\frac{U_{d a y}}{U_{\text {night }}}\right)=4$											
$\mathrm{U}_{\text {day }}$, m/s												
0	0.86	0.90	1.00	1.00	0.96	0.98	1.05	0.05	1.02	1.06	1.10	1.10
3	0.79	0.84	0.92	0.97	0.92	1.00	1.11	1.19	0.99	1.10	1.27	1.32
6	0.68	0.77	0.87	0.93	0.85	0.96	1.11	1.19	0.94	1.10	1.26	1.33
9	0.55	0.65	0.78	0.90	0.76	0.88	1.02	1.14	0.88	1.01	1.16	1.27
	$\left(\frac{U_{\text {day }}}{U_{\text {night }}}\right)=3$											
0	0.86	0.90	1.00	1.00	0.96	0.98	1.05	1.05	1.02	1.06	1.10	1.10
3	0.76	0.81	0.88	0.94	0.87	0.96	1.06	1.12	0.94	1.04	1.18	1.28
6	0.61	0.68	0.81	0.88	0.77	0.88	1.02	1.10	0.86	1.01	1.15	1.22
9	0.46	0.56	0.72	0.82	0.67	0.79	0.88	1.05	0.78	0.92	1.06	1.18
	$\left(\frac{U_{\text {day }}}{U_{\text {night }}}\right)=2$											
0	0.86	0.90	1.00	1.00	0.96	0.98	1.05	1.05	1.02	1.06	1.10	1.10
3	0.69	0.76	0.85	0.92	0.83	0.91	0.99	1.05	0.89	0.98	1.10	1.14
6	0.53	0.61	0.74	0.84	0.70	0.80	0.94	1.02	0.79	0.92	1.05	1.12
9	0.37	0.48	0.65	0.76	0.59	0.70	0.84	0.95	0.71	0.81	0.96	1.06
	$\left(\frac{U_{\text {day }}}{U_{\text {night }}}\right)=1$											
0	0.86	0.90	1.00	1.00	0.96	0.98	1.05	1.05	1.02	1.06	1.10	1.10
3	0.64	0.71	0.82	0.89	0.78	0.86	0.94	0.99	0.85	0.92	1.01	1.05
6	0.43	0.53	0.68	0.79	0.62	0.70	0.84	0.93	0.72	0.82	0.95	1.00
9	0.27	0.41	0.59	0.70	0.50	0.60	0.75	0.87	0.62	0.72	0.87	0.96

Fig. Q6. 1

