NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
 FACULTY OF INDUSTRIAL TECHNOLOGY
 DEPARTMENT OF CIVIL AND WATER ENGINEERING
 Bachelor of Engineering Honours Degree in Civil and Water Engineering PART I SECOND SEMESTER EXAMINATIONS MAY 2011
 ENGINEERING MECHANICS- TCW 1201

INSTRUCTIONS

Answer Any Five Questions

Total Marks	100
Time	3 hours

Question One

Rectilinear motion is motion along a straight line. Determine the position, velocity and the acceleration given;
(a) The position as a function of time.
[2 marks]
(b) Velocity as a function of time.
[2 marks]
(c) Acceleration as a function of time.
[2 marks]
(d) Acceleration as a function of position.
[4 marks]
(e) Acceleration as a function of velocity.
(f) Acceleration as a constant.

Question two

(a)Describe the development of thermodynamics as a field of study.
[6 marks]
(b) With the aid of diagrams write short notes on:
(i) Relative motion along a line.
(ii) Plane curvilinear motion.
[4 marks]
(iii) Space curvilinear motion.

Question three

A 10 kg projectile is fired horizontally with an initial velocity of $200 \mathrm{~m} / \mathrm{s}$ form the hilltop 100 m above the ground. Determine the range \mathbf{R} of the projectile (horizontal distance travelled) and the elapsed time before it strikes the ground. Neglect air resistance.

Question four

For the diagram shown in figure Q4 the 5 kg block slides along a horizontal floor and strikes bumper B. The coefficient of friction between the block and the floor is $u_{k}=0.45$, and the mass of the bumper is 2 kg . If the speed of the block is $10 \mathrm{~m} / \mathrm{s}$ when it is 20 m from the bumper, determine:
(a) the speed v of the block at the instant it strikes the bumper
[10 marks]
(b) The maximum deflection of the spring due to the motion of the block.
[10 marks]

Figure Q4

Question five

The bars shown in figure Q5 are sliding freely on a horizontal rod.. For the conditions specified in table Q5, determine:
(a) The final velocity of both beads.
[8marks]
(b) The percentage of the initial kinetic energy lost as a result of the collision of the two bars.
[6 marks]
(c) The average interaction force between the beads if the duration of impact is 0.001 s .
[6 marks]
Table Q5

$\mathbf{m A}$	$\mathbf{v A}$	$\mathbf{m B}$	$\mathbf{v B}$	e
$\mathbf{1 0 k g}$	$5 \mathrm{~m} / \mathrm{s}$	$\mathbf{5 k g}$	$\mathbf{2 m} / \mathbf{s}$	$\mathbf{0 . 4}$

Figure Q5

Question six

(a) Mention the applications of friction where there is need to minimize it and some where these effects are essential.
[6 marks]
(b) Distinguish between the coefficient of static friction and the coefficient of kinetic friction.

Determine the maximum distance d it can be placed from the smooth wall and not slip. The coefficient of static friction between the floor and the pole is $u_{s}=$ o. 32

Figure Q6

End of examination !!!

