NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING BACHELOR OF ENGINEERING (HONOURS) DEGREE

PART III SECOND SEMESTER FINAL EXAMINATIONS - MAY 2011

IRRIGATION SYSTEM DESIGN -TCW 3204

TOTAL MARKS = 100 TIME = 3 HOURS

INSTRUCTIONS

ANSWER ANY FOUR (4) QUESTIONS

QUESTION 1

- (a) Define the following terms:
 - (i) Field capacity
 - (ii) Permanent wilting point
 - (iii) Available water
 - (iv) Readily available water
 - (v) Total soil water potential

[10 Marks]

(b) Discuss the adaptability, advantages and disadvantages of sprinkler irrigation.

[10 Marks]

(c) For Zimbabwean conditions, the lateral spacing recommended is 50% (8 - 16km/hr) or 7 knots. What are the three types of sprinkler spacing that can be used and comment on the conditions applicable to each type.

[5 Marks]

QUESTION 2

(a) Many surface irrigation systems are ineffective and inefficient. Explain the factors that lead to this inefficiency.

[8 Marks]

(b) Discuss an advantage of surface irrigation over pressurized irrigation methods.

[3 Marks]

(c) As an Engineer in a big irrigation company, you have been assigned to look into the expansion of your operations in a district of a neighbouring country. What factors would you consider in the planning of this new irrigation project and what recommendations are you likely to give to your company.

[14 Marks]

QUESTION 3

(a) Describe three methods used to measure in-situ soil moisture and their applicability. For each method listed, give two advantages and disadvantages of the method.

[13 Marks]

(b) A furrow irrigation system has the following design parameters:

Field capacity	= 30% by weight			
Permanent wilting point	= 15% by weight			
Root zone	= 1.2 m			
Roughness coefficient	= 0.04			
Furrow length	= 260 m			
Furrow spacing	= 0.75 m			
Furrow slope	= 0.004m/m			
Adjusted wetted perimeter of furrow	= 0.45 m			
Intake family and furrow advance coefficient, a=1.196; b = 0.748; c = 7.0;				
$f = 7.97$ and $g = 2.556 \times 10^{-4}$.				

Compute:

- (i) The average infiltration
- (ii) Deep percolation
- (iii) Losses due to surface runoff as a depth
- (iv) The distribution efficiency

[12 Marks]

QUESTION 4

(a) Representativeness of any soil moisture observation point taken in the field is limited. Discuss this statement.

[6 Marks]

(b) Given a soil with the following characteristics (Table 1), calculate the depth to which 8 cm of infiltrated water would penetrate.

[10 Marks]

Table 1 Soil characteristics

Layer	Depth (cm)	θ _{fc}	θν
1	0-30	0.34	0.20
2	30-76	0.4	0.33
3	76 +	0.3	0.24

(c) A lateral sprinkler down slope has the following characteristics:

Slope	= 0.004
Nozzle operating pressure	= 400 kPa
Length of lateral, L	= 500 m

Determine its maximum allowable head loss. Assume that the first sprinkler is at a distance, SL (full lateral spacing) from the main line. The total number of nozzles on the lateral is 20 and m = 1.852 in Hazen-Williams Equation.

[9 Marks]

QUESTION 5

(a) Define soil water infiltration and discuss the factors that influence it under irrigation.

[15 Marks]

(b) The following meteorological data was obtained on a particular day at Goetz Station in Bulawayo near a maize crop field at the peak of its vegetative growth.

Minimum temperature = $12 \, {}^{\circ}C$ Maximum temperature = $35 \, {}^{\circ}C$ Mean day time wind speed at a height of 4.5 m = $329 \, \text{km/day}$ Net radiation = 7 mm/day Maximum relative humidity = $60 \, \%$ Minimum relative humidity = $35 \, \%$ Temperature related factor = 0.7Adjustment factor, C = 1.01

(i) Compute the reference evapotranspiration (ET_o) using the FAO Modified Penman's method.

[7 Marks]

(ii) Estimate the maize crop water requirements at the peak of its vegetative growth.

[3 Marks]

Helpful Equations

$$\begin{split} T_{avg} &= \frac{0.0929}{fxL} \left[\left(\frac{0.305}{L} \right)^2 \left[(\beta - 1) e^{\beta} + 1 \right] \right] \\ i_{avg} &= \left[a(T_{o-L})^b + c \right] \frac{P}{W} \\ i_{avg} &= \left[a(T_{co} - T_{avg})^b + c \right] \frac{P_{cur-back}}{W} + \left[\left(a(T_{avg})^b + c \right) \right] \frac{P_1 - P_2}{W} \\ i_g &= \frac{60}{WL} \left[Q(T_i) + Q_{CB}(T_n) \right] \quad ; \qquad T_n = \left[\frac{i_n \left(\frac{W}{P} \right) - C}{a} \right]^{\frac{1}{b}} , \text{min} \\ P &= 0.265 \left[\frac{Qn}{S^{0.5}} \right]^{0.425} + 0.227 \\ F &= \frac{1}{m+1} + \frac{1}{2N} + \frac{(m-1)^{0.5}}{6N^2} \quad ; \qquad ET_o = a + b \left[p(0.46T + 8.13) \right] \\ ET_o &= c \left[\frac{\Delta}{\Delta + \gamma} R_n + \frac{\gamma}{\Delta + \lambda} f(u) \Delta e \right] \quad \text{mm/day}; ET_{crop} = 25.4kc_i \frac{1.8t + 32}{100} p \quad \text{mm/month} \\ e_s &= 6.108e^s, \text{mb}; x = \frac{19.8374T_{mean} - 0.00831T_{mean}^2}{T_{mean} + 273.16} ; \quad e_a = \frac{e^o (T_{min}) \frac{RH_{max}}{100} + e^o (T_{max}) \frac{RH_{min}}{100}}{2} \end{split}$$

millibar (mb) 1 mbar = 0.1 kPa

Table 2. Friction factor, F for a lateral at full lateral spacing from the mainline

	Velocity related term exponent, m		
Number of nozzles	m=1.852	m=1.90	m=2.0
20	0.376	0.370	0.359
22	0.374	0.368	0.356
24	0.372	0.366	0.354
26	0.370	0.364	0.353
30	0.367	0.362	0.350

END