	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
	FACULTY OF INDUSTRIAL TECHNOLOGY
THINK M OTHER TENNS	DEPARTMENT OF CIVIL AND WATER ENGINEERING
	IRRIGATION SYSTEMS DESIGN TCW 3204
Main Exam	nination Paper
May 2015	

This examination paper consists of 4 pages

Time Allowed: 3 hours

Total Marks: 100

Special Requirements: NONE

Examiner's Name: MR T. THEBE

INSTRUCTIONS

- 1. Answer ALL questions
- 2. Each question carries 25 marks

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
5.	25
TOTAL	100

Copyright: National University of Science and Technology, 2015

QUESTION 1

1. You are given the following details for the designing of a suitable semi-portable/semipermanent sprinkler irrigation system in a low rainfall area with a reliable groundwater supply:

The area targeted for irrigation is 25 ha. The soils are dark clay loams with a maximum infiltration rate of 10 mm/hr. The soil available water is 150 mm/m. Maize with a maximum crop height of 2 m, rooting zone depth of 0.7 m, peak water requirement of 6.1 mm/day, and allowable soil moisture depletion of 55% is to be grown during the dry season when there is no effective rainfall. The maximum wind speed is 11 km/hr. A borehole with a maximum safe yield of 100 m³/hr supplies water to a 250 m³ plastered brick reservoir that is located at the top edge of the field (15m from the beginning of the field). Field slope is 1% from the location of the reservoir to the bottom edge of the field. Electricity supply is available at the reservoir. Adequate semi-skilled and unskilled labour is available for system operation.

Design a semi-portable/semi-permanent sprinkler irrigation system for the 25ha rectangular field with your chosen field dimensions, complete with a bill of quantities and clearly stated assumptions. You can make use of Table 1 below for sprinkler selection. **[25 marks]**

Nozzle diameter size	Sprinkler operating pressure (kPa)	Sprinkler discharge (m ³ /hr)	Sprinkler wetted diameter (m)	Sprinkler precipitation rate (mm/hr) at 12 x 12m layout	Sprinkler precipitation rate (mm/hr) at 12 x 18m layout	Sprinkler precipitation rate (mm/hr) at 18 x 18m layout
3	350	0.68	26.2	4.72	-	-
3.5	350	0.89	28.35	6.18	-	-
4	350	1.16	30.50	8.06	5.37	-
4.5	350	1.42	32.0	9.86	6.57	-
4.5	400	1.52	33.05	10.56	7.04	5.25
5	350	1.84	34.3	-	8.52	5.68
5	400	1.96	35.6	-	9.07	6.05

Table 1: Sprinkler characteristics under different layouts.

QUESTION 2

2a). Propose an alternative drip irrigation system for the irrigation of the same field given in question 1. Assume a maize spacing of 0.9 m between rows, and 0.3 m within rows. State any other assumptions that you make. [15 marks]

2b). Compare the two systems and state the system that would be more preferable to the client (farmer) focusing on water resources, pumping cost, capital cost, prospective yields. **[10 marks]**

QUESTION 3

3ai). Design a concrete-lined irrigation main canal to carry 300 m³/hr from a take-off point that is at an elevation of 97 m above a reference datum to a point that is the canal field turnout at an elevation of 96 m above a reference datum at a distance of 1 km away from the take-off point. Assume that the canal follows a straight line and that the ground slope is uniform along the full length of the canal. Assume a roughness co-efficient, *n*, of 0.016. Ignore the take-off and turn-out structural details. **[13 marks]**

3aii). State the material and equipment requirements for the construction of your given design with given assumptions about each material type, presenting a bill of quantities. **[5 marks]**

3b). Is it possible to replace the concrete-lined main canal stated above with a PVC pipe main line of an acceptable and available size. Justify your answer based on calculations. **[7 marks]**

QUESTION 4

4a). Explain the role of night storage reservoirs in irrigation schemes that make use of the surface irrigation method in group-managed schemes compared to individually-managed irrigation schemes. [5 marks]

4b). Detail the method that is internationally accepted for the estimation of reference crop evaporation-transpiration and how it is used to determine crop water requirements for the purposes of designing irrigation systems. **[8 marks]**

4c). Discuss the major management variables considered in the design and operation of irrigation systems and the key hydraulic evaluations undertaken to assess irrigation system performance. [12 marks]

Page 3 of 4

QUESTION 5

5a). A 1 m contracted rectangular weir is constructed to measure flow in a lined secondary canal where water is being diverted from the main canal to irrigate a block of fields that measure 50 ha. These fields are irrigated using surface irrigation methods over a 6 day cycle during day-time hours not exceeding 12 hours. The soil available water is 150 mm/m. Wheat with a maximum crop height of 0.85 m, rooting zone depth of 0.9 m, peak water requirement of 5.9 mm/day, and allowable soil moisture depletion of 50% is to be grown during the dry season when there is no effective rainfall. Assuming a 50% overall system efficiency from the take-off point to on-field use, calculate the amount of water diverted and the design water depth measured at the weir. **[15 marks]**

5b). Explain the importance of land leveling in the design of surface irrigation systems and the key factors for consideration in land leveling operations. [10 marks]

END OF QUESTION PAPER

Page 4 of 4

Copyright: National University of Science and Technology, 2015

ANNEX A – USEFUL FORMULAE FOR PRESSURIZED IRRIGATION SYSTEM DESIGN

<u>Christiansen's</u>: *m* co-efficient = 1.852 for Hazen-Williams equation

$$F = \frac{1}{m+1} + \frac{1}{2N} + \frac{\sqrt{m-1}}{6N^2}$$

$$F' = \frac{2N}{2N-1} \left(\frac{1}{m+1} + \frac{\sqrt{m-1}}{6N^2} \right)$$

Number of	F	F'
sprinklers,		
Ν		
2	0.64	0.52
3	0.53	0.44
4	0.49	0.41
5	0.46	0.40
6	0.44	0.39
7	0.43	0.38
8	0.42	0.38
9	0.41	0.37
10	0.40	0.37
12	0.39	0.37
14	0.39	0.36
16	0.38	0.36
18	0.38	0.36
20	0.38	0.36
25	0.37	0.36
30	0.37	0.36
35	0.37	0.36
40	0.36	0.36
50	0.36	0.35

Hazen-Williams:

$$h_f = K \frac{LQ^{d_1}}{D^{d_2}}$$

where:

L = the length of pipe, *m*; *Q* = the flow in *L/s*; *D* = the inside diameter of the pipe, mm; *K* = 1.21×10^{10} C^{-1.852} where *C* is the pipe roughness coefficient (assume 140 for PVC and 120 for aluminium); *d*₁ = 1.852 and *d*₂ = 4.87

For travelling rain guns:

$$d_{\text{gross}} = q_s / (v W_T)$$

where W_T is the width of the travel lane (i.e. the distance between travel lanes) and *v* is the linear velocity of the sprinkler cart.

$$\mathbf{h}_l = \mathbf{k}\mathbf{V}^2/2\boldsymbol{g}$$

where $h_l = the \ loss$, $k = the \ loss \ coefficient$, $V^2/2g = the \ velocity \ head$. The loss coefficients in the sprinkler cart and hose-reel cart were found to be 1.76 and 3.91, respectively.

TCW 3204

