NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONOURS) DEGREE PART II SECOND SEMESTER EXAM. JUNE – 2010 <u>GEOTECHNOLOGY TCW 3205</u>

INSTRUCTIONS

Answer any four questions

Time : 3 hours

Total Marks: 100

QUESTION 1

(a) Define the terms effective pressure and pore water pressure.

(2 marks)

(b) A layer of sand 4,5m deep overlies a thick bed of clay . The water table is 2m below the top of the sand . Above the water table , the sand has an average void ratio of 0,52 and an average degree of saturation of 0,37 . The clay has a water content of 42% . Calculate the total , effective and pore water pressures on a horizontal plane 9m below the ground surface and draw pressure distribution diagrams down to this level. Take the specific gravity for both the sand and clay as 2,65. (23 marks)

QUESTION 2

For the subsoil condition shown in fig. 2, draw the total, neutral and effective stress diagrams upto a depth of 9m, neglecting capillary flow. (25 marks)

QUESTION 3

With the aid of Mohr's circle diagrams, explain what is meant by active and passive Rankine states in a $c - \phi$ soil with a horizontal surface. Obtain an expression for the intensity of active pressure exerted by such a soil at a depth behind a retaining wall with smooth, vertical back. The surface of the soil is horizontal and coincides with the top of the wall.

(25 marks)

QUESTION 4

(a) Calculate the total active thrust on a vertical wall 8m , retaining a sand of density 1 700 kN/m³ for which $\phi = 35^{\circ}$, The surface of the sand is horizontal and the water – table is below the bottom of the wall . (take $p_w = 10 \text{ kg/m}^3$, = 10kN/m³). (6 marks)

(b) Determine the thrust on the wall if the water – table rises to a level 2m below the surface of sand. The saturated density of = 2 000kg/m3. Sketch the pressure distribution diagram.

(19 marks)

(25 marks)

QUESTION 5

For the given soil profile shown in fig. 5, calculate the geo – static effective pressure at a depth of 12m. (25 marks)

QUESTION 6

For an earth retaining wall shown in fig. 6, sketch the earth pressure diagram under active state and find the total thrust per unit length of wall and its location. **(25 marks)**

