NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY **BACHELOR OF ENGINEERING (HONOURS) DEGREE** PART V FIRST SEMESTER EXAMINATION- DECEMBER 2005 **DESIGN OF STRUCTURES II – TCW 5102**

INSTRUCTIONS

Answer Question ONE and THREE and any one of Question Two or Four **Open Book Examination** Time: 4hours Total Marks:100

 $= 6.0 \text{kN/m}^2$

QUESTION ONE

Design an interior panel of flat slab of 6.5m x 5.5m with a drop panel of 3.25m x 2.75m and columns 500mm square. The total thickness of the drop panel to be overall slab thickness plus 40mm.

Characteristic Dead load including self weight of slab = 8.0kN/m²

Characteristic Imposed load

Characteristic Imposed load = 6.0kN/m² Characteristic material strengths are f = 30 N/mm² and f = 460N/mm²

Design and detail one column and its foundation. Assume soil bearing pressure of 200 kN/m²

40 Marks

QUESTION TWO

Design a combined rectangular footing for two columns A and B. Column A carries a load of $G_k = 500$ kN and $Q_k = 200$ kN and is 400mm square. Column B carries a load of $G_k = 1000$ kN and $Q_k = 400$ kN and is 600mm square. The columns are at 5.0m centers. The property line is 270mm beyond the face of column A. Assume safe bearing capacity of soil as 150kN/m.² Characteristic material strengths are $f_{cu} = 40 N/mm^2$ and $f_y = 460 N/mm^2$

20 Marks

QUESTION THREE

A roof Truss is shown in Figure 1.0. **Design the following members :** (a) Top Chord member (b) Bottom Tie member

(c) Internal members

The effect of wind loading is not to be considered and do not check deflection.

DIMENSIONS	5:	
Span of Truss	=	16.0m
Rise of Truss	=	3.2m
Roof slope	=	21.8deg
Truss spacing	=	4.0m
Rafter length	=	8.62m

LOADING:	
cladding + insulation	$= 0.12 \text{ kN/m}^2$
Live Load	$= 0.75 \text{ kN/m}^2$

40Marks

QUESTION FOUR

Design the purlins for the roof truss in Question Three. Check only the shear capacity, moment capacity and deflection. Take Modulus of Elasticity E = 205kN/mm.²

20 Marks