NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
 FACULTY OF INDUSTRIAL TECHNOLOGY
 BACHELOR OF ENGINEERING (HONS) DEGREE
 DEPARTMENT OF CIVIL AND WATER ENGINEERING
 PART V SECOND SEMESTER EXAMINATIONS- JUNE 2010

HYDRAULIC DESIGN II - TCW5201

Instructions:

Answer All

$\begin{array}{ll}\text { Total marks: } & 100 \\ \text { Time: } & 3 \text { hours }\end{array}$

QUESTION ONE

a. A horizontal rectangular stilling basin of U.S.B.R Type III is used at the outlet of a spillway to dissipate energy. The spillway discharges $10 \mathrm{~m}^{3} / \mathrm{sec}$ and has a uniform width of 10 m . At the point here water enters the basin, the velocity is $10 \mathrm{~m} / \mathrm{sec}$. Calculate the sequent depth of the hydraulic jump. (5 marks)
b. A spillway needs to be designed to carry a peak flow of $50 \mathrm{~m}^{3} / \mathrm{sec}$ with the reservoir elevation 1 m above the crest of the spillway. The elevation difference between the reservoir and the tailwater is 15 m . If the overflow spillway is used with a crest coefficient of 2.0 , determine the length of the spillway crest required to handle the

Upstream slope (vert/hor.)

	$3 / 0$	$3 / 1$	$3 / 2$	$3 / 3$
$\mathrm{a} / \mathrm{H}_{3}$	0.175	0.139	0.115	0
$\mathrm{~b} / \mathrm{H}_{5}$	0.282	0.237	0.214	0.199
$\mathrm{r}_{1} / \mathrm{H}_{5}$	0.50	0.68	0.48	0.45
$\mathrm{r}_{2} / \mathrm{H}_{3}$	0.20	0.21	0.22	-
K	0.500	0.516	0.515	0.534
P	1.850	1.836	1.810	1.776

Figure 8.12 Overflow spillway profile.
discharge. Define the crest profile assuming an upstream slope of 3:1.
(20 marks)

QUESTION TWO

a. A masonry gravity dam of rectangular crossection is to be constructed. The density of the masonry is $2700 \mathrm{~kg} / \mathrm{m}^{3}$ and that of water $1000 \mathrm{~kg} / \mathrm{m}^{3}$. The maximum reservoir level is 305 m , while the level of the crest of the dam is 300 m and the level of the base of the dam is 270 m . Draw a neat sketch showing the loading on the dam and the related pressure distribution of these forces and determine the minimum width of the dam assuming a 1 m length. (15 marks)
b. Describe the techniques used in site investigation for a dam highlighting the information to be derived from these methods.
(5 marks)
c. Describe the factors that must be considered
i. When siting a dam
ii. When choosing the type of dam to be constructed. (5marks)

QUESTION THREE

a. Describe the effects of sedimentation in reservoirs and suggest ways to counter these. (5marks)
b. Draw and label a typical cross section through a zoned earthdam highlighting the measures taken to control seepage and embankment erosion.
c. Water flows over a broad crested weir 0.5 m high that completely spans a rectangular channel 10.0 m wide. When the discharge is $19.03 \mathrm{~m}^{3} / \mathrm{sec}$, estimate the depth of flow upstream of the weir. Assume no loss of energy and that critical depth occurs on the weir crest. (10 marks)

QUESTION FOUR

a. Circular concrete pipes $(\mathrm{n}=0.013)$ are used as culvert on a slope of 0.09 . The culvert is 1.2 m in diameter, 42 m long. The entrance is square edged $\left(\mathrm{k}_{\text {ent }}=0.5\right)$ and flush with the wall. The tail water level is 0.6 m below the culvert crown at outlet.
i. Determine the discharge if the head water level is 0.5 m above the crown at the inlet.
ii. Determine the head water elevation for a discharge of $10 \mathrm{~m}^{3} / \mathrm{sec}$ (15 marks)
b. Estimate the discharge for a venturi flume with a level invert, having a throat width of 1 m installed at one point of a rectangular open channel 2 m wide if:
i. The upstream depth is 1.2 m and the critical flow occurs in the flume
ii. If the upstream depth is 1.2 m and the depth in the throat is 1.05 m . Assume $\mathrm{C}_{\mathrm{v}}=1$ and $\mathrm{C}_{\mathrm{d}}=0.95 \quad$ (10marks)

