NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONS) DEGREE DEPARTMENT OF CIVIL AND WATER ENGINEERING PART V SECOND SEMESTER EXAMINATIONS- MAY 2011

HYDRAULIC DESIGN II - TCW5201

Instructions:

Answer All Questions

Total marks: 100
Time: $\quad 3$ hours

QUESTION ONE

a. An earth dam is 30 m high and has a 3 m freeboard and a 3 m crest width. The dam has a $1: 2$ upstream face slope and a $1: 3$ downstream face slope. The dam material has a permeability coefficient of $0.0001 \mathrm{~cm} / \mathrm{sec}$. Calculate the seepage per unit width using flownets. State any assumptions made clearly.
b. With aid of neatly labeled sketches describe the various types of earth dams.

QUESTION TWO

a. A concrete gravity dam has an overall height of 30 m , with a freeboard of 3 m and a crest width of 4 m . The dam has a $1: 4$ upstream face slope and a 1:2 downstream face slope. Assume that the uplift force takes a triangular distribution with maximum magnitude one third that of the hydrostatic pressure at the heel and at the toe. The specific gravity of the concrete is 2.65 and the coefficient of friction (μ) between the dam base and the foundation is 0.65 . Check the dam for stability against overturning and sliding. State any assumptions made clearly.
(20 marks)
b. Describe the middle third rule and explain its application in the design of concrete gravity dams.
(5 marks)

QUESTION THREE

a. Describe the effects of sedimentation in reservoirs and suggest ways to counter these. (5marks)
b. Water flows along a rectangular channel at depth of 1.30 m when discharge is $8.74 \mathrm{~m}^{3} / \mathrm{sec}$ and the channel width is 5.5 m . Ignoring energy losses, what is the minimum height of a rectangular broad crested weir if it is to function with critical depth on its crest?
(10 marks)
c. With aid of neatly labeled sketches describe how the venture flume is used to measure flow in an open channel.
(10 marks)

QUESTION FOUR

a. Discuss flood routing as an essential tool in the design of dams. What other factors and considerations should be made in dam design?
(10 marks)
b. A reservoir has a capacity of $5 \times 10^{6} \mathrm{~m}^{3}$ and a drainage area of $190 \mathrm{~km}^{2}$. The average annual runoff from the water shed is 390 mm , which brings in sediment quantity of $600 \mathrm{~m}^{3} / \mathrm{km}^{2}$. Determine the time required to reduce the reservoir capacity to $1 \times 10^{6} \mathrm{~m}^{3}$. (10 marks)
c. Describe the types of spillways and indicate where they are most suitable.

