NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONOURS) DEGREE PART V EXAMINATIONS MAY 2005 FOUNDATION ENGINEERING DESIGN TCW 5202

INSTRUCTIONS

Answer ALL Questions
Time 3 Hours
Total Marks:100

QUESTION ONE

[A] EXPLAIN THE FOLLOWING

(i) Total Overburden Pressure
(ii) Total Foundation Pressure
(iii) Net Foundation Pressure
(iv) Ultimate Bearing Pressure
(v) Bearing Capacity and Bearing Pressure
[B]
An isolated 500 mm dia. R.C.Pile is required to carry a maximum load of 500 kN .
It is sited on 7.5 m of recently placed loose sand filling ($\mathrm{N}=9$ blows per 0.3 m and angle of shearing ressistance $\quad=30$), overlying 4.5 m of soft clay (shear strength $\mathrm{c}=$ $24 \mathrm{kN} / \mathrm{m}$) followed by stiff clay (shear strength $\mathrm{c}=60 \mathrm{kN} / \mathrm{m}$ at 12.0 m below ground level increasing to $300 \mathrm{kN} / \mathrm{m}$ at 25.0 m below ground level.
Determine the required depth of penetration.
(20 Marks)

QUESTION TWO

Consider a Pile group shown in Figure 1.0. A vertical load of 5000 kN is applied at point G . Determine the maximum and minimum load in the pile group.
(20 Marks)

QUESTION THREE

[A]

A load of 500 kN is uniformly distributed over a rectangular area of 1.5 m by 1.0 m . Determine the vertical stress component at a depth of 2.0 m at the point marked G in the Figure 2.0
(15 Marks)
[B]
A flexible foundation 3.0 m square is to carry a uniformly distributed load of 2500 kN and will be founded at a depth of 2.0 m below the surface of a clay whose mean density is $18.5 \mathrm{kN} / \mathrm{m}$. The deformation modulus E is $20000 \mathrm{kN} / \mathrm{m}$.
The clay stratum rests at a depth of 8.0 m below ground surface on a thick stratum of dense sandy gravel which may be taken as rigid. Poissons ratio $=0.5$.
Figure 3.0
Determine the vertical displacement at
(a) Corner of the foundation
(b) At the centre of the foundation.

Question Four

[A] Define Geotechnical Process.
[B] Name three methods available in Geotechnical Processes.
(3 Marks)
[C] Briefly describe any two methods.

QUESTION TWO
Figure 1.0

QUESTION THREE

Figure 2.0

QUESTION THREE

Figure $3.0[B]$

