NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF CIVIL AND WATER ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONOURS) DEGREE PART V EXAMINATIONS (Supplementary) JULY 2005 FOUNDATION ENGINEERING DESIGN TCW 5202

INSTRUCTIONS

Answer ALL Questions	Time 3 Hours Total Marks:100					
QUESTION ONE						
[A] What are Pile Foundations	(6 Marks)					
[B] Describe types of Piles	(8 Marks)					
[C] Describe Frankie Piles	(6 Marks)					
QUESTION TWO						
 [A] Define (i) Immediate settlement (ii) Consolidation settlement (iii) Final settlement 	(12 Marks)					
[B]						

(i) Define Compression Index C

(ii) The following values were obtained from an Oedometer Test on a sample of clay.

Applied Pressure	0	25	50	100	200	400	800
(kN/ m)							
Void Ratio, e	2.11	2.08	1.99	1.85	1.61	1.35	1.11

Plot the 'e' vs	log	curve and estimate the Compression Index	(13 Marks)
-----------------	-----	--	------------

QUESTION THREE

A load of 500kN is uniformly distributed over a rectangular area of 1.5m by 1.0m. Determine the vertical component of stress at a depth of 2.0 meters below

(i) Center of rectangle

(12 Marks) (13 Marks)

(ii) One corner of rectangle

Question Four

[A] Describe The Standard Compaction Test (Proctor), stating its object. (10 Marks)

[B] In a Standard Compaction Test On a sample of soil the following results were obtained

Water Content	Dry Density
%	Mg/ m
5	1.8
8	1.97
10	2.00
12	1.97
15	1.88
20	1.73

Show these results plotted as Dry Density against Water Content and determine Maximum Density