NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY BACHELOR OF ENGINEERING (HONS) DEGREE

Examination January 2013

TEE3101 Digital Signal Processing

Duration of Examination 3 Hours

Instructions to Candidates:

- 1. Answer any five questions only.
- 2. Each question carries equal marks.
- 3. Show all your steps clearly in any calculation.
- 4. Start the answers for each question on a fresh page.

Question 1

Explain with the help of sketches and mathematical expression the complete characterisation of a discrete time signal in a linear time invariant system in terms of a unit impulse response.

(20 marks)

Question 2

The transfer function of a discrete time system has poles at z=0.5, z=0.1+j0.2, z=0.1-j0.2 and zeros at z=-1 and z=1.

- (i) Sketch the pole-zero diagram for the system.
- (ii) Derive the system transfer function from the pole -zero diagram.
- (iii) Develop the difference equation.

(20 marks)

Question 3

- (a) Draw the block diagram that would represent a hardware architecture for a special purpose digital signal processor. Give an explanation of why the type of architecture shown by the diagram is chosen. (14 marks)
- (b) State at least four characteristics that would be included in the specification of a digital filter.

(4 marks)

(c) Give the major difference between the finite impulse response digital filter and the infinite impulse response filter. (2 marks)

Question 4

- (a) The transfer function for a filter is given by $H(z) = 1 1.3435 z^{-1} + 0.9025 z^{-2}.$ Draw the realisation block diagram for each of the following.
 - (i) transversal structure,
 - (ii) two lattice structure, and calculate the values of the coefficient for a lattice structure. (15 marks)
- (b) Give the five design steps for digital filters. (5 marks)

Question 5

(a) Determine the discrete –time signal x[n] obtained from uniformly sampling at 400 Hz a continuous time signal x(t) given below;

 $x(t) = 10\cos(120\pi t) + 6\sin(600\pi t) + 4\cos(680\pi t) + 8\cos(1000\pi t) + 12\sin(1320\pi t)$ (6 marks)

(b) Using N=8 explain the eight-point decimation-in-time FFT. Draw the butterfly diagram for the computation. (14 marks)

Question 6

- (a) Give three reasons that justify the use of oversampling in digital processing. (6 marks)
- (b) Discuss the use of uniform and non-uniform quantization and encoding. Give examples of the typical application of each technology. (14 marks)

Question 7

Find the inverse Laplace transform of (a)

(i)
$$X(s) = \frac{2s^2 + 11s + 19}{(s+1)(s+2)(s+3)}$$

(i)
$$X(s) = \frac{2s^2 + 11s + 19}{(s+1)(s+2)(s+3)}$$

(ii) $X(s) = \frac{2(3s^2 - 1)}{(s^2 + 1)^3}$ (20 marks)

Question 8

Find the z-transform of the following signals (a)

(i)
$$x[n] = na^{n-1}$$

(ii)
$$x[n] = 3\delta[n] + 5\delta[n-3] + 7\delta[n-8]$$

(iii)
$$x[n] = 3^n + (-1 + 0.8n)5^n$$

(12 marks)

(b) Find the discrete signal corresponding to the z-transform

(i)
$$X(z) = \frac{3}{1 - \frac{1}{2}z^{-1}} + \frac{2}{1 - \frac{1}{3}z^{-1}}$$

(ii)
$$X(z) = \frac{Z^3}{(z - \frac{1}{2})(z + \frac{1}{3})^2}$$

(8 marks)

SOME COMMON z-TRANSFORM PAIRS

Transform pair Signa	al Transform	ROC
1. $\delta[n]$	1	All z
2. u[n]	$\frac{1}{1-z^{-1}}$	z > 1
3. $u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	Z ^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$6\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $,
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
8. $-n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
9. $[\cos \Omega_0 n]u[n]$	$\frac{1 - [\cos \Omega_0]z^{-1}}{1 - [2\cos \Omega_0]z^{-1} + z^{-2}}$	z > 1
10. $[\sin \Omega_0 n]u[n]$	$\frac{[\sin \Omega_0]z^{-1}}{1 - [2\cos \Omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \Omega_0 n]u[n]$	$\frac{1 - [r\cos\Omega_0]z^{-1}}{1 - [2r\cos\Omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \Omega_0 n]u[n]$	$\frac{[r\sin\Omega_0]z^{-1}}{1-[2r\cos\Omega_0]z^{-1}+r^2z^{-2}}$	z >r

$f(t) \qquad \text{Definition} \qquad \int_{0}^{\infty} f(t)e^{-st} dt$ $Kf(t) \qquad \text{Linearity} \qquad KF(s)$ $\frac{df(t)}{dt} \qquad \text{Differention} \qquad sF(s) - f(0)$ $\frac{d^{n}f(t)}{dt^{n}} \qquad \text{Differentiation} \qquad s^{n}F(s) - s^{n-1}f(0) - \dots - \frac{d^{n-1}f(0)}{dt^{n-1}} \dots$ $\int_{0}^{\infty} f(t) dt \qquad \text{Integration} \qquad \frac{1}{s}F(s)$ $f(t) \qquad \text{Complex differentiation} \qquad -\frac{dF(s)}{ds}$ $e^{-at}f(t) \qquad \text{Complex translation} \qquad F(s+a)$ $f(t-a)u(t-a) \qquad \text{Real translation} \qquad e^{-ss}F(s)$ $f(t) \qquad \text{Periodic function} \qquad \frac{F_{1}(s)}{1-e^{-st}}$ $\int_{0}^{\infty} x(\tau)h(t-\tau) \qquad \text{Convolution} \qquad H(s)X(s)$ $\delta(t) \qquad \qquad 1$ $u(t) \qquad \qquad \frac{1}{s}$ $e^{-at}u(t) \qquad \qquad \frac{1}{s+a}$ $\sin\beta tu(t) \qquad \qquad \frac{\beta}{s^{2}+\beta^{2}}$ $e^{-at}\sin\beta tu(t) \qquad \qquad \frac{\beta}{(s+a)^{2}+\beta^{2}}$ $e^{-at}\cos\beta tu(t) \qquad \qquad \frac{s}{(s+a)^{2}+\beta^{2}}$ $tu(t) \qquad \qquad \frac{1}{s^{n+1}}$ $te^{-at}u(t) \qquad \qquad \frac{1}{(s+a)^{n+1}}$	$f(t)$ $f_1(t) + f_2(t)$	TABLE OF LAPLACE TRANS	FORM $F(s)$ $F_1(s) + F_2(s)$	
$kf(t)$ Linearity $KF(s)$ $\frac{df(t)}{dt}$ Differention $sF(s)-f(0)$ $\frac{d^n f(t)}{dt^n}$ Differentiation $s^n F(s) - s^{n-1} f(0) - \dots - \frac{d^{n-1} f(0)}{dt^{n-1}} \dots$ $\int f(t)dt$ Integration $\frac{1}{s}F(s)$ $f(t)$ Complex differentiation $-\frac{dF(s)}{ds}$ $e^{-nt} f(t)$ Complex translation $F(s+a)$ $f(t-a)u(t-a)$ Real translation $e^{-sa} F(s)$ $f(t)$ Periodic function $\frac{F_1(s)}{1-e^{-sT}}$ $\int x(\tau)h(t-\tau)$ Convolution $H(s)X(s)$ $\delta(t)$ 1 $u(t)$ $\frac{1}{s}$ $e^{-nt}u(t)$ $\frac{1}{s+a}$ $\sin \beta tu(t)$ $\frac{s}{s^2+\beta^2}$ $e^{-nt} \sin \beta tu(t)$ $\frac{s}{s^2+\beta^2}$ $e^{-nt} \cos \beta tu(t)$ $\frac{s}{s^2+\beta^2}$ $tu(t)$ $\frac{1}{s^2}$ $tu(t)$ $\frac{1}{s^2}$ $tu(t)$ $\frac{1}{s^{n+1}}$ $te^{-nt}u(t)$ $\frac{n!}{s^{n+1}}$ $te^{-nt}u(t)$ $\frac{1}{(s+a)^2}$		Definition	$\int_{0}^{\infty} f(t)e^{-st}dt$	
$\frac{d^{n}f(t)}{dt^{n}} \qquad \text{Differentiation} \qquad s^{n}F(s)-s^{n-1}f(0)-\dots-\frac{d^{n-1}f(0)}{dt^{n-1}}\dots$ $\int_{0}^{\infty} f(t)dt \qquad \text{Integration} \qquad \frac{1}{s}F(s)$ $tf(t) \qquad \text{Complex differentiation} \qquad -\frac{dF(s)}{ds}$ $e^{-at}f(t) \qquad \text{Complex translation} \qquad F(s+a)$ $f(t-a)u(t-a) \qquad \text{Real translation} \qquad e^{-sa}F(s)$ $f(t) \qquad \text{Periodic function} \qquad \frac{F_{1}(s)}{1-e^{-st}}$ $\int_{0}^{\infty} x(\tau)h(t-\tau) \qquad \text{Convolution} \qquad H(s)X(s)$ $\delta(t) \qquad \qquad 1$ $u(t) \qquad \qquad \frac{1}{s}$ $e^{-at}u(t) \qquad \qquad \frac{\beta}{s^{2}+\beta^{2}}$ $\cos\beta tu(t) \qquad \qquad \frac{\beta}{(s+a)^{2}+\beta^{2}}$ $e^{-at}\cos\beta tu(t) \qquad \qquad \frac{\beta}{(s+a)^{2}+\beta^{2}}$ $tu(t) \qquad \qquad \frac{1}{s^{2}}$ $tu(t) \qquad \qquad \frac{1}{s^{n+1}}$ $te^{-nt}u(t) \qquad \qquad \frac{1}{(s+a)^{2}}$	Kf(t)	Linearity	••	
$\int_{S} f(t)dt \qquad \text{Integration} \qquad \frac{1}{s} F(s)$ $tf(t) \qquad \text{Complex differentiation} \qquad -\frac{dF(s)}{ds}$ $e^{-at} f(t) \qquad \text{Complex translation} \qquad F(s+a)$ $f(t-a)u(t-a) \qquad \text{Real translation} \qquad e^{-aa} F(s)$ $f(t) \qquad \text{Periodic function} \qquad \frac{F_t(s)}{1-e^{-sT}}$ $\int_{S} x(\tau)h(t-\tau) \qquad \text{Convolution} \qquad H(s)X(s)$ $\delta(t) \qquad \qquad 1$ $u(t) \qquad \qquad \frac{1}{s}$ $e^{-at}u(t) \qquad \qquad \frac{1}{s+a}$ $\sin \beta tu(t) \qquad \qquad \frac{\beta}{s^2+\beta^2}$ $cos \beta tu(t) \qquad \qquad \frac{s}{s^2+\beta^2}$ $e^{-at} \cos \beta tu(t) \qquad \qquad \frac{\beta}{(s+a)^2+\beta^2}$ $tu(t) \qquad \qquad \frac{1}{s^2}$ $t^n u(t) \qquad \qquad \frac{1}{s^{n+1}}$ $te^{-at}u(t) \qquad \qquad \frac{1}{(s+a)^2}$	$\frac{\mathrm{d}f(t)}{dt}$	Differention	sF(s) - f(0)	
the strict of t	$\frac{\mathrm{d}^{\mathrm{n}} f(t)}{dt^{n}}$	Differentiation	$s^{n}F(s)-s^{n-1}f(0)\frac{d^{n-1}f(0)}{dt^{n-1}}$	
$e^{-at} f(t) \qquad \text{Complex translation} \qquad F(s+a)$ $f(t-a)u(t-a) \qquad \text{Real translation} \qquad e^{-sa} F(s)$ $f(t) \qquad \text{Periodic function} \qquad \frac{F_1(s)}{1-e^{-sT}}$ $\int x(\tau)h(t-\tau) \qquad \text{Convolution} \qquad H(s)X(s)$ $\delta(t) \qquad \qquad 1$ $u(t) \qquad \qquad \frac{1}{s}$ $e^{-at} u(t) \qquad \qquad \frac{\beta}{s^2+\beta^2}$ $\cos \beta t u(t) \qquad \qquad \frac{\beta}{(s+a)^2+\beta^2}$ $e^{-at} \cos \beta t u(t) \qquad \qquad \frac{\beta}{(s+a)^2+\beta^2}$ $tu(t) \qquad \qquad \frac{1}{s^2}$ $t^n u(t) \qquad \qquad \frac{n!}{s^{n+1}}$ $te^{-at} u(t) \qquad \qquad \frac{1}{(s+a)^2}$	$\int_{0}^{\infty} f(t)dt$	Integration	3	
$f(t-a)u(t-a) \qquad \text{Real translation} \qquad e^{-sa}F(s)$ $f(t) \qquad \text{Periodic function} \qquad \frac{F_1(s)}{1-e^{-st}}$ $\int_{S} x(\tau)h(t-\tau) \qquad \text{Convolution} \qquad H(s)X(s)$ $\delta(t) \qquad \qquad 1$ $u(t) \qquad \qquad \frac{1}{s}$ $e^{-at}u(t) \qquad \qquad \frac{\beta}{s^2+\beta^2}$ $\cos\beta tu(t) \qquad \qquad \frac{\beta}{(s+a)^2+\beta^2}$ $e^{-at}\cos\beta tu(t) \qquad \qquad \frac{\beta}{(s+a)^2+\beta^2}$ $tu(t) \qquad \qquad \frac{1}{s^2}$ $t^nu(t) \qquad \qquad \frac{n!}{s^{n+1}}$ $te^{-at}u(t) \qquad \qquad \frac{1}{(s+a)^2}$	tf(t)	Complex differentiation	$-\frac{dF(s)}{ds}$	
$f(t) \qquad \text{Periodic function} \qquad \frac{F_1(s)}{1-e^{-sT}}$ $\int_{S} x(\tau)h(t-\tau) \qquad \text{Convolution} \qquad H(s)X(s)$ $\delta(t) \qquad \qquad 1$ $u(t) \qquad \qquad \frac{1}{s}$ $e^{-at}u(t) \qquad \qquad \frac{1}{s+a}$ $\sin \beta t u(t) \qquad \qquad \frac{\beta}{s^2+\beta^2}$ $\cos \beta t u(t) \qquad \qquad \frac{\beta}{(s+a)^2+\beta^2}$ $e^{-at} \sin \beta t u(t) \qquad \qquad \frac{\beta}{(s+a)^2+\beta^2}$ $e^{-at} \cos \beta t u(t) \qquad \qquad \frac{1}{s^2}$ $t u(t) \qquad \qquad \frac{1}{s^n}$ $t^n u(t) \qquad \qquad \frac{n!}{s^{n+1}}$ $te^{-at}u(t) \qquad \qquad \frac{1}{(s+a)^2}$	$e^{-at}f(t)$	Complex translation	F(s+a)	
$\int_{0}^{\infty} x(\tau)h(t-\tau) \text{Convolution} \qquad H(s)X(s)$ $\delta(t) \qquad 1$ $u(t) \qquad \frac{1}{s}$ $e^{-at}u(t) \qquad \frac{1}{s+a}$ $\sin \beta t u(t) \qquad \frac{\beta}{s^{2}+\beta^{2}}$ $\cos \beta t u(t) \qquad \frac{s}{s^{2}+\beta^{2}}$ $e^{-at} \sin \beta t u(t) \qquad \frac{\beta}{(s+a)^{2}+\beta^{2}}$ $e^{-at} \cos \beta t u(t) \qquad \frac{s+a}{(s+a)^{2}+\beta^{2}}$ $tu(t) \qquad \frac{1}{s^{2}}$ $t^{n}u(t) \qquad \frac{n!}{s^{n+1}}$ $te^{-at}u(t) \qquad \frac{1}{(s+a)^{2}}$	f(t-a)u(t-a)	Real translation	$e^{-sa}F(s)$	
$\delta(t)$ $u(t)$ $\frac{1}{s}$ $e^{-at}u(t)$ $\frac{1}{s+a}$ $\sin \beta t u(t)$ $\frac{\beta}{s^2 + \beta^2}$ $\cos \beta t u(t)$ $\frac{s}{s^2 + \beta^2}$ $e^{-at} \sin \beta t u(t)$ $\frac{\beta}{(s+a)^2 + \beta^2}$ $e^{-at} \cos \beta t u(t)$ $\frac{s+a}{(s+a)^2 + \beta^2}$ $t u(t)$ $\frac{1}{s^2}$ $t^n u(t)$ $\frac{n!}{s^{n+1}}$ $t e^{-at}u(t)$ $\frac{1}{(s+a)^2}$	f(t)	Periodic function	$\frac{F_1(s)}{1-e^{-sT}}$	
$u(t) \qquad \frac{1}{s}$ $e^{-at}u(t) \qquad \frac{1}{s+a}$ $\sin \beta t u(t) \qquad \frac{\beta}{s^2 + \beta^2}$ $\cos \beta t u(t) \qquad \frac{s}{s^2 + \beta^2}$ $e^{-at} \sin \beta t u(t) \qquad \frac{\beta}{(s+a)^2 + \beta^2}$ $e^{-at} \cos \beta t u(t) \qquad \frac{s+a}{(s+a)^2 + \beta^2}$ $t u(t) \qquad \frac{1}{s^2}$ $t^n u(t) \qquad \frac{n!}{s^{n+1}}$ $t e^{-at}u(t) \qquad \frac{1}{(s+a)^2}$	$\int x(\tau)h(t-\tau)$	Convolution	H(s)X(s)	
$e^{-at}u(t)$ $\sin \beta t u(t)$ $\frac{\beta}{s^2 + \beta^2}$ $\cos \beta t u(t)$ $\frac{s}{s^2 + \beta^2}$ $e^{-at} \sin \beta t u(t)$ $\frac{\beta}{(s+a)^2 + \beta^2}$ $e^{-at} \cos \beta t u(t)$ $\frac{1}{s^2}$ $t u(t)$ $\frac{1}{s^2}$ $t^n u(t)$ $\frac{n!}{s^{n+1}}$ $t e^{-at}u(t)$ $\frac{1}{(s+a)^2}$	$\delta(t)$		1	
$ \frac{s}{s+a} $ $ \frac{\beta}{s^2 + \beta^2} $ $ \cos \beta t u(t) $ $ \frac{s}{s^2 + \beta^2} $ $ e^{-at} \sin \beta t u(t) $ $ \frac{\beta}{(s+a)^2 + \beta^2} $ $ e^{-at} \cos \beta t u(t) $ $ \frac{s+a}{(s+a)^2 + \beta^2} $ $ t u(t) $ $ \frac{1}{s^2} $ $ t^n u(t) $ $ \frac{n!}{s^{n+1}} $ $ t e^{-at} u(t) $ $ \frac{1}{(s+a)^2} $	u(t)		$\frac{1}{s}$	
$cos \beta t u(t)$ $e^{-at} sin \beta t u(t)$ $e^{-at} cos \beta t u(t)$ $tu(t)$ $\frac{s}{(s+a)^2 + \beta^2}$ $\frac{s+a}{(s+a)^2 + \beta^2}$ $\frac{1}{s^2}$ $t^n u(t)$ $\frac{n!}{s^{n+1}}$ $te^{-at} u(t)$ $\frac{1}{(s+a)^2}$	$e^{-at}u(t)$			
$e^{-at} \sin \beta t u(t)$ $e^{-at} \cos \beta t u(t)$ $tu(t)$ $\frac{s+a}{(s+a)^2 + \beta^2}$ $\frac{1}{s^2}$ $t^n u(t)$ $\frac{n!}{s^{n+1}}$ $te^{-at} u(t)$ $\frac{1}{(s+a)^2}$	$\sin \beta t u(t)$		$\frac{\beta}{s^2 + \beta^2}$	
$e^{-at}\cos\beta t u(t)$ $\frac{s+a}{(s+a)^2 + \beta^2}$ $t u(t)$ $\frac{1}{s^2}$ $t^n u(t)$ $\frac{n!}{s^{n+1}}$ $t e^{-at} u(t)$ $\frac{1}{(s+a)^2}$	$\cos \beta t u(t)$		$\frac{s}{s^2 + \beta^2}$	
$e^{-at}\cos\beta t u(t)$ $\frac{s+a}{(s+a)^2 + \beta^2}$ $t u(t)$ $\frac{1}{s^2}$ $t^n u(t)$ $\frac{n!}{s^{n+1}}$ $t e^{-at} u(t)$ $\frac{1}{(s+a)^2}$	$e^{-at}\sin\beta tu(t)$		$\frac{\beta}{(s+a)^2+\beta^2}$	
tu(t) $\frac{1}{s^2}$ $t^n u(t) \qquad \frac{n!}{s^{n+1}}$ $te^{-at} u(t) \qquad \frac{1}{(s+a)^2}$	$e^{-at}\cos\beta tu(t)$			
$te^{-at}u(t) \frac{1}{(s+a)^2}$	tu(t)			
	$t^n u(t)$		$\frac{n!}{s^{n+1}}$	
	$te^{-at}u(t)$		$\frac{1}{(s+a)^2}$	
	$t^n e^{-at} u(t)$		$\frac{n!}{(s+a)^{n+1}}$	