NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

Bachelor of Engineering Honours Degree Industrial & Manufacturing Engineering

1st SEMESTER EXAMINATIONS APRIL 2009

THERMODYNAMICS – TIE 2101

ANSWER ANY <u>FIVE (5)</u> QUESTIONS *TIME ALLOWED: 3 HRS* ADDITIONAL MATERIAL – STEAM TABLES

Question 1

0.35kg of air at a pressure of $140 \frac{kN}{m^2}$ occupies $0.4 m^3$ and from this condition is compressed to 1.4 $\frac{MN}{m^2}$ according to the law $PV^{1.34} = C$.

Determine:

(a) the change of internal energy of the air	[10]
(b) the work done on or by the air	[5]
(c) the heat received or rejected by the air	[5]
Take $c_p = 1.005 kJ / kgK$ and $c_v = 1.005 kJ / kgK$	

Question 2

(a) Show from the first law of thermodynamics that the change of entropy for a gas	is
given by $s_2 - s_1 = c_p \ln(T_2 / T_1) + R \ln(P_2 / P_1)$	[8]
(b) Describe with the aid of a diagram the stages in the formation of superheated ste	am.
	[8]
(c) A perpetual motion machine of its own kind is impossible. Discuss.	[4]

Question 3

Determine the saturation temperature, Specific liquid enthalpy, specific enthalpy of evaporation and specific enthalpy of dry saturated steam at a pressure of 2.08 $\frac{MN}{m^2}$.

[20]

Question 4

In an ideal Diesel cycle the volume ratios of the adiabatic expansion and compression are 8:1 and 12:1 respectively. The pressure and the temperature at the beginning of compression are 90 kN_{m^2} and 44 °C respectively. The pressure at the end of the adiabatic expansion is $258 \frac{kN}{m^2}$. Determine: (a) the maximum temperature attained during the cycle [10]

(b) the thermal efficiency of the cycle [10]

(c) Take $\gamma = 1.4$

Question 5

(a) Describe the major components of a steam power plant [10] (b) A closed gas turbine unit operating with maximum and minimum temperatures of 760 $^{\circ}C$ and 20 $^{\circ}C$ has a pressure ratio of 7:1. Calculate the ideal cycle efficiency and the work ratio. [10]

Question 6

(a) A furnace wall consists of 300mm firebrick, 150mm insulating brick, and 300mm building brick. The inside wall is at a temperature of 500 o/c and the atmospheric temperature is $30 \,^{\circ}C$. The heat transfer coefficient for the outside surface is 10 W_m^2 2K , and the thermal conductivities of the firebrick, insulating brick, and the building brick are 1.4, 0.2, and 0.7W/mK, respectively. Calculate **[10]**

(i) the rate of heat loss per unit wall surface area and

(ii) the temperature of the outside wall surface of the furnace [10]

End of examination