NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY
 DEPARTMENT OF INDUSTRI AL AND MANUFACTURI NG ENGI NEERI NG

 Bachelor of Engineering Honours Degree Industrial \& Manufacturing

 Bachelor of Engineering Honours Degree Industrial \& Manufacturing Engineering

 Engineering}

SUPPLEMENTARY EXAMINATIONS OCTOBER 2009
THERMODYNAMICS - TIE 2101
INSTRUCTIONS TO CANDIDATES
ANSWER ANY FIVE (5) QUESTIONS
TIME ALLOWED: 3 HRS
ADDITIONAL MATERIAL - STEAM TABLES

Question 1

A perfect gas is compressed in a cylinder according to the law $P V^{1,34}=C$. The initial condition of the gas is $2.07 \mathrm{Bars}, 0.41 \mathrm{~m}^{3}$ and $23^{\circ} \mathrm{C}$. If the final pressure is 6.35 Bars and $\mathrm{Cp}=1.005 \mathrm{~kJ} / \mathrm{kgK}$ [3]
calculate:
(a) the mass of the gas in the cylinder
(b) the final volume
(C) the final temperature
(d)the work done to compress the gas
(e) the change in the internal energy
(f) the transfer of heat between the gas and the cylinder

Question 2

(a) Show from the first law of thermodynamics that the change of entropy for a gas is given by $s_{2}-s_{1}=c_{p} \ln \left(T_{2} / T_{1}\right)+R \ln \left(P_{2} / P_{1}\right)$
(b) Describe with the aid of a diagram the stages in the formation of superheated steam.
(c) A perpetual motion machine of its own kind is impossible. Discuss [4]

Question 3

Air at 2.04 Bars, $25^{\circ} \mathrm{C}$ initially occupying a cylinder volume of $0.3 \mathrm{~m}^{3}$ is compressed reversibly and adiabatically by a piston to a pressure of 7.3 bars. Calculate:
(a) the final temperature
(b) the final volume
(c)work done on the mass of air in the cylinder.

Question 4

A mass of 5 kg of air initially at 3bar and 98o/c undergoes a cycle consisting of the following processes
(a) Constant pressure expansion until the volume is tripled
(b) Constant volume cooling
© Reversible adiabatic compression to the initial state
Calculate
(i) the pressure after constant volume cooling process
(ii) the net work done in the cycle

Question 5

(a) Describe the major components of a refrigerator
(b) A petrol engine cylinder has diameter of 10 cm and stroke 17 cm , clearance volume $250 \mathrm{~cm}^{3}$. If the temperature at the beginning of the compression is $67^{\circ} \mathrm{C}$, Find the temperature at the end of compression and the work done during the compression stroke if the law of compression is $\mathrm{pV}^{1.3}=$ c. Take the initial pressure as $200 \mathrm{kN} / \mathrm{m}^{2}$.

Question 6

(a) Derive from first principles the transfer of heat through a composite thick cylinder.
A wall is made up of two layers of bricks each 100 mm thick with a 50 mm air space between them. The coefficients of thermal conductivity are as follows: inside brick-0.6W/mK outside brick- $0.025 \mathrm{~W} / \mathrm{mK}$ air- $0.8 \mathrm{~W} / \mathrm{mK}$. The wall is 6.15 m long and 5.5 m wide.
(b) Determine the heat loss/h through the wall if the inside wall temperature is 24 and the outside face temperature is 7 .
(c) Determine, also, the interface temperatures.

