NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF INDUSTRIAL TECHNOLOGY
DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING
Bachelor of Engineering Honours Degree Industrial \& Manufacturing Engineering
$1^{\text {st }}$ SEMESTER EXAMINATIONS - FEBRUARY 2010
THERMODYNAMICS - TIE 2101
ANSWER ANY FIVE (5) QUESTIONS
TIME ALLOWED: 3 HRS
ADDITIONAL MATERIAL - STEAM TABLES

QUESTION 1

(a) The laws of thermodynamics are really statements of thermodynamic behavior. They are natural laws, which are based on observable phenomena. These are considered as law because they have never been shown to be contradicted. Discuss.
(b) A perfect gas is compressed in a cylinder according to the law $P V^{1.34}=C$. The initial condition of the gas is 2.07 Bars, $0.41 \mathrm{~m}^{3}$ and $23^{\circ} \mathrm{C}$. If the final pressure is 6.35 Bars and $\mathrm{Cp}=1.005 \mathrm{~kJ} / \mathrm{kgK}$ calculate:
(i) the mass of the gas in the cylinder
(ii) the final volume
(iii) the final temperature
(iv) the work done to compress the gas [3]
(v) the change in the internal energy [3]
(vi) the transfer of heat between the gas and the cylinder [3]

QUESTION 2

Determine
(a) the saturation temperature
(b) the specific liquid enthalpy
(c) the specific enthalpy of evaporation and
(d) the specific enthalpy of dry saturated steam at a pressure of $15.02 \mathrm{MN} / \mathrm{m}^{2}$.

QUESTION 3

(a) Describe the principle of operation of the reheat cycle.
(b) In a refrigerating plant using R12 the vapour leaves the evaporator dry saturated at 1.74 bar and is compressed to 8.44 bar. The temperature of the vapour leaving the compressor is $42^{\circ} \mathrm{C}$ and the liquid leaves the condenser at $23^{\circ} \mathrm{C}$ and is throttled to the evaporator pressure calculate:
(i) the refrigerating effect [5]
(ii) the specific work input [5]
(iii) the $\mathrm{COP}_{\text {ref }}$

QUESTION 4

(a) Entropy is defined as the multiplicity of the system, the disorder of the system or the energy which is unavailable to do work. Discuss
(b) 0.5 kg of air at a pressure of $40 \mathrm{MN} / \mathrm{m}^{2}$ and a temperature of $40^{\circ} \mathrm{C}$ receives heat energy at constant volume until its pressure becomes $80 \mathrm{MN} / \mathrm{m}^{2}$. It then receives heat energy at constant pressure until its volume becomes $0.5 m^{3}$.
Determine the change of entropy during each process.
Take $\mathrm{Cp}=1.005 \mathrm{~kJ} / \mathrm{kgK}$ and $\mathrm{Cv}=0.717 \mathrm{~kJ} / \mathrm{kgK}$

QUESTION 5

(a) Describe five major components of a steam power plant
(b) A petrol engine cylinder has diameter of 10 cm and stroke 15 cm , clearance volume $300 \mathrm{~cm}^{3}$. If the temperature at the beginning of the compression is $70^{\circ} \mathrm{C}$, Find the temperature at the end of compression and the work done during the compression stroke if the law of compression is $\mathrm{pV}^{1.11}=$ c. Take the initial pressure as $156 \mathrm{kN} / \mathrm{m}^{2}$.

QUESTION 6

A composite wall is made up of an external thickness of brickwork 200mm thick inside which is a layer of fibre -glass 80 mm thick. The fibre - glass is faced internally by an insulating board 30 mm thick. The coefficients of thermal conductivities for the three materials are as follows:

Insulating board
Brickwork
Fibre - glass

The surface transfer coefficient of the inside wall is $2.7 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$ while that of the outside wall is $3.4 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$.
(a) Determine the overall transfer coefficient of the wall.
(b) Using the coefficient, determine the heat loss per hour through such a wall 7 m high and 10 m long. Take internal and external temperatures as $30^{\circ} \mathrm{C}$ and $15^{\circ} \mathrm{C}$ respectively.

End of examination

