## NATIONALUNIVERSITY OF SCIENCE AND TECHNOLOGY



# FACULTY OF INDUSTRIAL TECHNOLOGY DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

# B-Eng Hons Industrial and Manufacturing Engineering Main Examination

COURSE : ENGINEERING THERMODYNAMICS

**CODE** : TIE 2101

DATE : JANUARY 2013

**DURATION**: 3 HOURS

#### INSTRUCTIONS AND INFORMATION TO CANDIDATE

- 1. Answer **Five (5) questions**.
- 2. This paper contains Six (6) questions.
- 3. There are three (3) printed pages.

#### **Additional Material**

Steam Tables

#### **QUESTION 1**

(a) Write short notes on:
(i) Work and the polytropic process [3]
(ii) Work and the hyperbolic process [3]

(iii) Internal energy [3]

(iv) Calorimetry [3]

(b) A gas is compressed hyperbolically from a pressure and volume of 250 kN/m<sup>2</sup> and 0.085m<sup>3</sup>, respectively, to a volume of 0.009m<sup>3</sup>. Determine the final pressure and the work done on the gas. [8]

#### **QUESTION 2**

A nozzle has the following entry conditions: area  $A_1$ , Velocity  $C_1$ , Pressure  $P_1$ , Specific volume  $V_1$ , Temperature  $T_1$ , Specific enthalpy  $h_1$ .

Exit conditions are as follows A<sub>2</sub>, C<sub>2</sub>, P<sub>2</sub>, V<sub>2</sub>, T<sub>2</sub>, h<sub>2</sub>. From first principles derive an expression for the general flow analysis. [20]

### **QUESTION 3**

- (a) Determine the specific enthalpy of steam at a pressure of 3MN/m² and with a temperature of 350°C. [15]
- (b) Describe the principle of operation of the Rankine cycle. [5]

# **QUESTION 4**

Air flows through a diffuser. At one section the temperature is  $5^{\circ}$ C, pressure 180 kN/m² and the velocity is 1000m/s. Along the tube the velocity has fallen to 400m/s. Assuming that the adiabatic flow is frictionless,

#### Determine:

(a) The increase in pressure [7]

(b) Temperature increase or decrease [7]

(c) Internal energy [6]

#### **QUESTION 5**

The volume ratio of the adiabatic expansion and compression in a diesel cycle are 8:1 and 16:1 respectively. The pressure and temperature at the beginning of compression are  $100 \text{ kN/m}^2$  and  $50^{\circ}\text{C}$  respectively. The pressure at the end of adiabatic expansion is  $330 \text{ kN/m}^2$ . Determine:

(a) the maximum temperature. [10]

(b) the thermal efficiency. [10]

#### **QUESTION 6**

A composite wall is made up of an external thickness of brickwork 100mm thick inside which is a layer of fibre –glass 100mm thick. The fibre – glass is faced internally by an insulating board 30mm thick. The coefficients of thermal conductivities for the three materials are as follows:

Insulating board 0.06W/mK Brickwork 0.4W/mK Fibre – glass 0.03W/mK

The surface transfer coefficient of the inside wall is 1.7W/m2K while that of the outside wall is 2.4W/m<sup>2</sup>K.

i) Determine the overall transfer coefficient of the wall. [10]

ii) Using the coefficient, determine the heat loss per hour through such a wall 10m high and 16m long. Take internal and external temperatures as  $35^{\circ}C$  and  $11^{\circ}C$  respectively. [10]

**End of examination**