

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF COMMERCE

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

BACHELOR OF ENGINEERING (HONS) DEGREE INDUSTRIAL AND MANUFACTURING ENGINEERING

MATERIALS TECHNOLOGY I

TIE 2104

First Semester Main Examination Paper

December 2014

This examination paper consists of 3 pages

Time Allowed: 3 hours

Total Marks: 100

INSTRUCTIONS

- 1. Answer any five (5) questions
- 2. Each question carries 20 marks
- 3. This paper contains seven (7) questions

MARK ALLOCATION

QUESTION	MARKS
1.	20
2.	20
3.	20
4.	20
5.	20
6	20
7	20
TOTAL	100

Copyright: National University of Science and Technology, 2014

Question 1

(a) Discuss the general properties and applications of the following classes of engineering materials:

(i) Metals,	[3]
(ii) Polymers,	[3]
(iii) Ceramics,	[3]
(iv) Composites,	[3]
(v) Advanced materials.	[3]
(b) What is the relationship between structure, processing and propert	ies of engineering
materials?	[5]
Question 2	
(a) Giving examples in each case, distinguish between an amorphous and a cr	rystalline structure.
	[4]
(b) Prove that for a Hexagonal Close Packed structure (HCP), the atomic pack	king factor is 0.74
	[12]
(c) What is the significance of Atomic Packing Factors (APFs) in determ	nining properties of
materials?	[2]
(d) Define polymorphism.	[2]
Question 3	
(a) Describe a solid solution.	[4]
(b) Clearly distinguish between interstitial and substitutional defects	[6]
(c) State and explain two (2) situations where imperfections in material struct	tures are desirable.

[6]

(d) Calculate the fraction of atom sites that are vacant for copper at its melting temperature of 1084 °C. Assume an energy for vacancy formation of 0.90 eV/atom. [4]

Question 4

- (a) Explain two reasons interstitial diffusion proceeds faster than vacancy diffusion [4]
- (b) What are the key differences between steady-state and non-steady-state diffusion? [6]
- (c) A sheet of steel 2.5 mm thick has nitrogen atmospheres on both sides at 900°C and is permitted to achieve a steady-state diffusion condition. The diffusion coefficient for nitrogen in steel at this temperature is $1.2 \times 10^{-10} m^2/s$ and the diffusion flux is found to be $1.0 \times 10^{-7} m^2/s$. Also, it is known that the concentration of nitrogen in the steel steel at the high-pressure surface is 2 kg/m³. How far into the sheet from this high pressure side will the concentration be 0.5 kg/m³? [10]

Question 5

(a) Describe your understanding of the following terms as applied to material properties:

(i) Ductility,	[2]
(ii) Flexural strength,	[3]
(iii) Resilience,	[3]
(iv) True stress,	[3]
(v) True strain.	[2]
(b) What is elasticity and how does it compare for metallic and polymeric materials?	[4]
(c) Which material properties can be measured using the stress-strain curve?	[3]

Question 6

Quest	ion 7	
(b) Suggest how fatigue failure can be minimised.		[4]
	(ii) Ductile fracture,	[8]
	(i) Brittle fracture,	[8]
. ,	• • • •	

(a) Fully describe and explain the following fracture mechanisms:

(a) Describe the ultras	sonic testing technique and state its applications.	[8]
(b) Compare and cont	rast the Vickers and Rockwell hardness tests.	[10]
(c) State two (2) techr	niques that can be used for microstructural analysis.	[2]

End of Examination