NATI ONAL UNI VERSI TY OF SCI ENCE AND TECHNOLOGY FACULTY OF I NDUSTRI AL TECHNOLOGY DEPARTMENT OF I NDUSTRI AL AND MANUFACTURI NG ENGI NEERI NG Bachelor of Engineering Honours Degree I ndustrial \& Manufacturing Engineering

$1^{\text {st }}$ EXAMINATIONS APRIL 2009

DYNAMICS TIE 2106

ANSWER ANY FIVE (5)_ QUESTIONS
TIME ALLOWED: 3 HRS

Question 1

Rectilinear motion is a motion that occurs along a straight line. Derive the equations for position, displacement, velocity, and acceleration given:
(a) Position $\mathrm{x}(\mathrm{t})$ as a function of time (t)
(b) Velocity $\mathrm{v}(\mathrm{t})$ as a function of time (t)
(c) Acceleration $\mathrm{a}(\mathrm{t})$ as a function of time (t)
(d) Acceleration a(x) as a function of position (x)
(e) Acceleration $\mathrm{a}(\mathrm{v})$ as a function of velocity (v)
(f) Acceleration a as a constant ($\mathrm{a}=\mathrm{c}$)

Question 2

The velocity of a particle moving along the x -axis is given as a function of time; the position is given at some instant as follows:

$$
\begin{aligned}
& v(t)=48-16 \mathrm{~m} / \mathrm{s} \\
& x(0)=60 \mathrm{~m}
\end{aligned}
$$

(a) Determine the position of the particle as a function of time
(b) Determine the acceleration of the particle as a function of time
(c) Evaluate the:
(i) position,
(ii) velocity, and
(iii) acceleration of the particle at $t=8 \mathrm{~s}$
(d) Determine the total distance traveled by the particle between $t=5 \mathrm{~s}$ and $t=8 \mathrm{~s}$
(e) Sketch $\mathrm{x}(\mathrm{t}), \mathrm{v}(\mathrm{t})$, and a (t$) ; 0 \leq t \leq 8 \mathrm{~s}$

Question 3

For the Figure Q3 the 5kg block comes off the ramp with at a high velocity, a bumper B may be required to catch them. The kinetic coefficient of friction between the block and the floor is $u_{k}=0.3$, and the spring's modulus is $\mathrm{k}=1750 \mathrm{~N} / \mathrm{m}$. If the speed of the 5 kg package is $\mathrm{v}=8 \mathrm{~m} / \mathrm{s}$ when it is $\mathrm{l}=3 \mathrm{~m}$ from the bumper determine
(a) The maximum deflection of the spring
(b) The final resting position of the package

Figure Q3

Question 4

(a) Give a description of the collision of elastic bodies
(b) A ball weighing 2 N has an initial velocity $v_{i}=8 j+6 k \mathrm{~m} / \mathrm{s}$ when a gust of wind exerts a force of $F=0.8 t$ i on the ball. Determine the magnitude and direction of the velocity of the ball after 0.6 seconds

Question 5

A 50 N projectile is fired horizontally with an initial velocity of $500 \mathrm{~m} / \mathrm{s}$ from the top of a hill, which is 500mabove the surrounding area.
(a) Determine the range R of the projectile (horizontal distance traveled)
(b) The elapsed time before it strikes the ground. Air resistance is negligible

Question 6

Two beads are sliding freely on a horizontal rod as shown in Figure Q6. For the conditions specified in table Q6, determine:
(a) The final velocity of both beads
(b) The percentage of the initial kinetic energy lost as a result of the collision
(c) The average interaction force between the beads if the duration of impact is 0.001 s .

Table Q6

M_{a}	V_{a}	M_{b}	V_{b}	\mathbf{e}
$\mathbf{9 k g}$	$\mathbf{3 m} / \mathbf{s}$	$\mathbf{2 k g}$	$\mathbf{0 m} / \mathbf{s}$	$\mathbf{0 . 3}$

Figure Q6

End of Examination!!!

