NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

Bachelor of Engineering Honours Degree Industrial & Manufacturing Engineering

1st EXAMINATIONS APRIL 2009

DYNAMICS TIE 2106

ANSWER ANY FIVE (5)_QUESTIONS TIME ALLOWED: 3 HRS

Question 1

Rectilinear motion is a motion that occurs along a straight line. Derive the equations for position, displacement, velocity, and acceleration given:

(a) Position x(t) as a function of time (t)	[2]
(b) Velocity v(t) as a function of time (t)	[3]
(c) Acceleration a(t) as a function of time (t)	[3]
(d) Acceleration a(x) as a function of position (x)	[4]
(e) Acceleration a(v) as a function of velocity (v)	[4]
(f) Acceleration a as a constant (a=c)	[4]

Question 2

The velocity of a particle moving along the x-axis is given as a function of time; the position is given at some instant as follows:

$$v(t) = 48 - 16 \frac{m}{s}$$
$$x(0) = 60m$$

(a) Determine the position of the particle as a function of time	[2]
--	-----

(b) Determine the acceleration of the particle as a function of time [2]

(c) Evaluate the:

(i)	position,	[2]
(ii)	velocity, and	[2]
(iii)	acceleration of the particle at $t = 8s$	[2]

(d) Determine the total distance traveled by the particle between t = 5s and t = 8s [4]

(e) Sketch x (t), v (t), and a (t); $0 \le t \le 8s$ [6]

Question 3

For the Figure Q3 the 5kg block comes off the ramp with at a high velocity, a bumper B may be required to catch them. The kinetic coefficient of friction between the block and the floor is $u_k = 0.3$, and the spring's modulus is k=1750N/m. If the speed of the 5kg package is v=8m/s when it is l=3m from the bumper determine

- (a) The maximum deflection of the spring [10]
- (b) The final resting position of the package

[10]

Question 4

(a) Give a description of the collision of elastic bodies [8]

(b) A ball weighing 2N has an initial velocity $v_i = 8j + 6k$ m/s when a gust of wind exerts a force of F = 0.8t i on the ball. Determine the magnitude and direction of the velocity of the ball after 0.6 seconds [12]

Question 5

A 50 N projectile is fired horizontally with an initial velocity of 500m/s from the top of a hill, which is 500mabove the surrounding area.

(a) Determine the range R of the projectile (horizontal distance traveled)	[10]
(b) The elapsed time before it strikes the ground. Air resistance is negligible	[10]

Question 6

Two beads are sliding freely on a horizontal rod as shown in Figure Q6. For the conditions specified in table Q6, determine:

(a) The final velocity of both beads(b) The percentage of the initial kinetic energy lost as a result of the collision

(b) The percentage of the initial kinetic energy lost as a result of the collision [7](c) The average interaction force between the beads if the duration of impact is 0.001s.

[8]

[5]

Table Q6

M _a	V_a	M_{b}	V_b	e
9kg	3m/s	2kg	0m/s	0.3

End of Examination!!!