NATIONALUNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

B-Eng Hons Industrial and Manufacturing Engineering <u>Main Examination</u>

COURSE : DYNAMICS I

CODE : TIE 2106

DATE : JANUARY 2013

DURATION: 3 HOURS

INSTRUCTIONS AND INFORMATION TO CANDIDATE

- 1. Answer any Five (5) questions.
- 2. This paper contains Seven (7) questions.
- 3. There are Four (4) printed pages.

QUESTION I

- (a) Define displacement, velocity, speed and acceleration. [4]
 (b) Explain the difference between instantaneous and average values of speed, velocity and acceleration. [2]
 (c) Outline the conditions under which the equations of uniformly accelerated motion may be applied. [10]
 (d) A body accelerates uniformly from rest. After 20 minutes it has travelled 100m.
 - (i) Calculate the average acceleration. [2]
 - (ii) Calculate also the instantaneous speed. [2]

QUESTION 2

- (a) The motion of a particle is described by the following relationship:
 - $x(t) = (6\cos 6t + 10\sin 7t + 17t)m/s$. Compute the velocity and acceleration of the particle at t=10secs. [10]
- (b) An air plane, flying horizontally at 800km/h drops a bomb from a height of 3km downward. Determine the horizontal distance *d* travelled by the bomb before it hits the target. [10]

QUESTION 3

The total linear momentum of a system of four particles at time t = 5s is given by $G_{2.2} = 10i - 8j + 5k$ kg.m/s. At time t = 10s, the linear momentum has changed to $G_{2.4} = 5i - .5j + 6k$ kg.m/s. Calculate the magnitude $\bf \it F$ of the time average of the resultant of the external forces acting on the system during the interval. [20]

QUESTION 4

Write short notes on the following five types of rigid body motion

(a) Translation
(b) Rotation about a fixed axis
(c) General plane motion
(d) Rotation about a fixed point
(e) General
[4]
(f)

Question 5

With reference to the following headings, explain why engineers should study dynamics:

(a) Kinematics of particles [4] Kinematics of rigid bodies [4] (b) Kinetics of particles using: (c) Newton's second law (i) [4] Work and energy methods (ii) [4] Impulse and momentum (iii) [4]

Question 6

- (a) With the aid of diagrams differentiate between direct central impact and oblique central impact [8]
- (b) Two bodies A and B are moving to the right as shown in Figure Q5
 Determine the final velocity of both bodies after collision if they stick together. [12]

Figure Q5 Collision of elastic bodies

Question 7

A 50kg crate slides down a ramp and falls as shown if figure Q6. The initial speed of the crate is 20m/s and the coefficient of friction between the crate and the floor is 0.3, determine:

(a) The distance *d* from the end of the ramp to where the package hits the floor.

[12]

(b) The speed of the crate when it hits the floor.

[8]

Figure Q6 Body sliding down a ramp

End of examination!!!