

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY
 DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING
 DYNAMICS I

TIE 2106

First Semester Main Examination Paper

December 2014

This examination paper consists of five (5)printed pages

Time Allowed:	$\mathbf{3}$ hours
Total Marks:	$\mathbf{1 0 0}$
Examiner's Name:	Mr. W. Tumbudzuku

INSTRUCTIONS AND INFORMATION TO CANDIDATE:

1. Answer any five(5) questions
2. Each question carries 20 marks
3. Use of calculators is permissible

Page 1 of 5

Question 1

a) Define the following engineering mechanics terms:
i) Designanalysis,
ii) Technological processes, [1]
iii) Structures,
iv) Frames,
v) Kinematic chains,
vi) Actuator.
b) With the aid of diagrams and equations write short notes on:
i) Uniform motion,
ii) Uniformly accelerated/decelerated motion,
iii) Nonuniformly accelerated motion,
iv) Motion where the acceleration is given as a function of position, velocity and timethat is, $\boldsymbol{a}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{v}, \boldsymbol{t})$.

Question 2

The acceleration of a particle moving along the x -axis is given as a function of time, the position and velocity of the particle at some instant are shown.

$$
\begin{equation*}
a(t)=30 \operatorname{sinwt} \mathrm{~m} / \mathrm{swherew}=2.5 \mathrm{rad} / \mathrm{s}, x(10)=40 \mathrm{~m} ; v(10)=8 \mathrm{~m} / \mathrm{s} \tag{4}
\end{equation*}
$$

a) Determine the position of the particle as a function of time.
b) Determine the velocity as a function of time.
c) Evaluate the position, velocity and acceleration of the particle at time $t=7$ seconds.
d) Determine the total distance travelled by the particle between time $t=4$ seconds and $\mathrm{t}=8$ seconds.
e) Sketch $\boldsymbol{x}(t), v(t)$ and $\boldsymbol{a}(t)$ for $0 \leq x \leq 12$ secs.

Question 3

A projectile is fired from the edge of a 1000 m cliff with an initial velocity of $250 \mathrm{~ms}^{-1}$ at an angle of 75° with the horizontal. Neglecting air resistance, find:
a) The horizontal distance from the gun to the point where the projectile strikes the ground.
c) The greatest elevation above the ground reached by then projectile.
d) The range when the projectile is at a height of 1000 m .

$$
\begin{equation*}
\text { Page } \mathbf{2} \text { of } \mathbf{5} \tag{6}
\end{equation*}
$$

Question 4

A particle falls under the force of gravity in a medium that exerts a resisting force proportional to the velocity of the particle as shown in Figure Q4.
a) Develop an equation for the velocity given that the velocity is zero at time $t=0$.
b) Develop an equation for the displacement given that the displacement is zero at time, $\mathrm{t}=0$.

Figure Q4Falling particle.

Question 5

a) Name and define two forms of mechanical energy.
b) List conditions to be satisfied for work to be done.
c) State the law of conservation of energy.
d) From the impact event, two separate phases (deformation and restoration phase) can be identified. Derive the expression for the coefficient of restitution \mathbf{e} from basic principles.
e) A 15 kg collar A is moving to the right along a frictionless rod with a speed of $\mathbf{3 0} \mathrm{ms}^{-1}$ when it strikes the 10 kg collar B that is at rest. The two bodies travel together and hit a spring with a spring constant $\mathrm{k}=8 \mathrm{kN} / \mathrm{m}$, determine the maximum deflection, if the coefficient of restitution between the collars is $\mathrm{e}=0,7$.

Question 6

a) The total linear momentum of a system of four particles at time $t=30$ secondsse is given by $\boldsymbol{G}_{\mathbf{2 . 2}}=\mathbf{1 5 0 i}-\mathbf{8 0} \boldsymbol{j}+\mathbf{6 0 k} \mathrm{kgm} / \mathrm{s}$. At time $t=20$ seconds, the linear momentum has changed to $\boldsymbol{G}_{\mathbf{2 . 4}}=\mathbf{5 0} \boldsymbol{i}-\mathbf{5 8} \boldsymbol{j}+\mathbf{6 0 k} \mathrm{kgm} / \mathrm{s}$. Calculate the magnitude \boldsymbol{F} of the time average of the resultant of the external forces acting on the system during the interval.
b) Small packages of explosives travelling on the conveyor belt fall off into a 1 m long loading truck as shown in Fig $\boldsymbol{Q} \boldsymbol{6} \boldsymbol{b}$. If the conveyor is running at a constant speed of $\boldsymbol{v}_{\boldsymbol{c}}=\mathbf{2 m} / \boldsymbol{s}$, determine the smallest and largest distance R at which the end A of the car may be placed from the conveyor so that the packages enter the car.

Fig 6b Conveying system

Question 7

a) Determine the first and second moment of inertia for a rectangle of length $b m$ and height h m about the centroidal x and y axis.
b) A 2 kg package slides on a frictionless floor and strikes the bumpers shown in Figure $7 \boldsymbol{b}$. The two linear springs are identical, with spring constants of $k=3.5 \mathrm{KN} / \mathrm{m}$. Determine the work done on the package by the springs as spring 1 is compressed by 60 mmand spring 2 is compressed by 10 mm . Note that spring one is 120 mm long and spring two is 80 mm long.

Fig 7bSpring mass system

End of Examination

Page 5 of 5

