	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY	
TIME IN COLUMN TANK	FACULTY OF INDUSTRIAL TECHNOLOGY	
	DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING	
	DYNAMICS I	
	TIE 2106	
First Semester Main Examination Paper		
December 2	2014	

This examination paper consists of five (5)printed pages

Time Allowed: 3 hours

Total Marks: 100

Examiner's Name: Mr. W. Tumbudzuku

INSTRUCTIONS AND INFORMATION TO CANDIDATE:

- 1. Answer any five(5) questions
- 2. Each question carries 20 marks
- 3. Use of calculators is permissible

Page 1 of 5

Question 1

\		C 11 ·	• •	· · ·	
a)	Define the	tollowing	engineering	mechanics for	erms
u)		10110 wing	engineering	meenumes u	ermo.

i)	Designanalysis,	[2]
ii)	Technological processes,	[1]
iii)	Structures,	[1]
iv)	Frames,	[2]
v)	Kinematic chains,	[2]
vi)	Actuator.	[2]

b) With the aid of diagrams and equations write short notes on:

i)	Uniform motion,	[2]
ii)	Uniformly accelerated/decelerated motion,	[2]
iii)	Nonuniformly accelerated motion,	[2]
iv)	Motion where the acceleration is given as a function of position, velocity and	
	timethat is, $a = f(x, v, t)$.	[4]

Question 2

The acceleration of a particle moving along the x-axis is given as a function of time, the position and velocity of the particle at some instant are shown.

a(t) = 30 sinwt m/swherew=2.5 rad/s, x(10)=40m; v(10)=8m/s.

a)	Determine the position of the particle as a function of time.	[4]
b)	Determine the velocity as a function of time.	[4]
c)	Evaluate the position, velocity and acceleration of the particle at time <i>t</i> =7seconds.	
		[4]
d)	Determine the total distance travelled by the particle between time t=4seconds and	
	t=8seconds.	[2]
e)	Sketch $x(t)$, $v(t)$ and $a(t)$ for $0 \le x \le 12 secs$.	[6]

Ouestion 3

A projectile is fired from the edge of a 1000m cliff with an initial velocity of 250ms⁻¹ at an angle of 75° with the horizontal. Neglecting air resistance, find:

- a) The horizontal distance from the gun to the point where the projectile strikes the ground.
- [8] c) The greatest elevation above the ground reached by then projectile.
- [6] [6]
- d) The range when the projectile is at a height of 1000m.

Page 2 of 5

Copyright: National University of Science and Technology, 2014

Question 4

A particle falls under the force of gravity in a medium that exerts a resisting force proportional to the velocity of the particle as shown in Figure Q4.

- a) Develop an equation for the velocity given that the velocity is zero at time t=0. [10]
- b) Develop an equation for the displacement given that the displacement is zero at time, t=0. [10]

Figure Q4Falling particle.

Question 5

a)	Name and define two forms of mechanical energy.	[4]	
b)	List conditions to be satisfied for work to be done.	[2]	
c)	State the law of conservation of energy.	[1]	
d)	From the impact event, two separate phases (deformation and restoration phase) can be		
	identified. Derive the expression for the coefficient of restitution e from basic princ	ples.	
		[6]	
e)	A 15kg collar A is moving to the right along a frictionless rod with a speed of 30 ms strikes the 10kg collar B that is at rest. The two bodies travel together and hit a sprin	s ⁻¹ when it ng with a	

spring constant k= 8kN/m, determine the maximum deflection, if the coefficient of restitution between the collars is e= 0,7. [7]

Copyright: National University of Science and Technology, 2014

Question 6

- a) The total linear momentum of a system of four particles at time t = 30 secondsse is given by $G_{2.2} = 150i - 80j + 60k$ kgm/s. At time t = 20seconds, the linear momentum has changed to $G_{2.4} = 50i - 58j + 60k$ kgm/s. Calculate the magnitude F of the time average of the resultant of the external forces acting on the system during the interval. [10]
- b) Small packages of explosives travelling on the conveyor belt fall off into a 1m long loading truck as shown in *Fig Q6b*. If the conveyor is running at a constant speed of $v_c = 2m/s$, determine the smallest and largest distance R at which the end A of the car may be placed from the conveyor so that the packages enter the car. [10]

Fig 6b Conveying system

Question 7

a) Determine the first and second moment of inertia for a rectangle of length *b m* and height *h m* about the centroidal x and y axis. [10]

b) A 2kg package slides on a frictionless floor and strikes the bumpers shown in *Figure 7b*. The two linear springs are identical, with spring constants of k = 3.5KN/m. Determine the work done on the package by the springs as spring 1 is compressed by 60mmand spring 2 is compressed by 10mm. Note that spring one is120mm long and spring two is 80mm long. [10]

Fig 7bSpring mass system

End of Examination

Page 5 of 5

Copyright: National University of Science and Technology, 2014