NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL & MANUFACTURING ENGINEERING

ENGINEERING DESIGN APPLICATIONS 1 – TIE 2107

1st SEMESTER EXAMINATIONS APRIL 2009

Instructions to Candidates

Time Allowed 3 hours Answer any **FIVE** *questions*

Question 1

Explain the design phases.

Question 2

a) A gear set consists of a 16 tooth pinion driving a 40 tooth gear. The module is 12mm and the addendum and dedendum are 12 and 15 mm respectively. The gears are cut using a pressure angle of 20° Compute:

i. The circular pitch
ii. The center distance
iii. The radii of circles

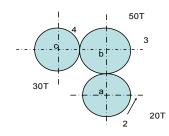
b) Explain the various methods of making gears

Question 3

- a) Derive an expression for the force required to raise the load in power screws [10]
- b) A power screw has a major diameter 32mm, a pitch of 4mm with double threads. The given data include $\mu = \mu c = 0.08$, dc =40mm and F =6.4KN per screw.
 - i. Find the thread depth, thread width, mean diameter, minor diameter and the lead. [6]
 - ii.Find the torque required to rotate the screw against the load[2]iii.The overall efficiency[2]

Question 4

A cone clutch has a cone angle of 11.5° a mean friction diameter of 320mm, and a face with of 60mm. The clutch is to transmit a torque of 200Nm. The coefficient of friction is 0.26. Find the actuating force and pressure. Use the assumption of uniform pressure.


[20]

[20]

Question 5

Pinion two in the Figure Q5 below runs at 1800 revs/min and transmits 3KW to the idler gear 3. the teeth are cut on the 20° full depth system and have a module of 3mm.

- i) Draw a free body diagram of gear 3 and show all the forces which act upon it.
- ii) Calculate also the resultant shaft reactions. [10]

Question 6

a) Derive the formula

$$\frac{T_1 - mv^2}{T_2 - mv^2} = e^{\alpha f}$$
[10]

b) A smaller pulley of a crossed belt drive transmits 7.5kW at 1000rpm. The smaller pulley has a diameter of 250mm, velocity ratio 2 and center distant is 1.25m. It is desired to use a flat belt 6mm thick with expected coefficient of friction 0.3. If the maximum allowable stress in the belt is 1.7MPa determine the leather belt width *b*. Leather has a density of 970kg/m³ [10]

Question 7

Referring to fig Q6. above find the operating force required to stop rotation if the drum is 500mm in diameter, rotates at 100rpm counterclockwise and transmits 5Hp.Assume that a=150mm, b=25mm and c=300mm, and that the coefficient of friction is 0.3. The wrap angle is 240^0 [20]

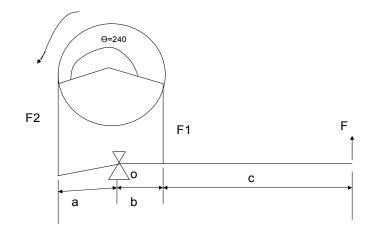


Fig Q6

End of Exam