NATI ONAL UNI VERSI TY OF SCI ENCE AND TECHNOLOGY FACULTY OF I NDUSTRI AL TECHNOLOGY DEPARTMENT OF I NDUSTRI AL \& MANUFACTURI NG ENGI NEERI NG ENGI NEERI NG DESI GN APPLI CATI ONS 1 - TIE 2107
 SUPPLEMENTARY EXAMI NATI ONS OCTOBER 2009

Time: Three hours
Instructions:
Answer Five Questions

QUESTION 1
Explain the Design process.
QUESTION 2
a) Define the following terms with regard to design
(i) Factor of safety
(ii) Reliability
(iii) Mechanical design [3]
b). With the aid of a sketch show the terminology of screw threads. [10]

QUESTION 3

a) Show that in power screws the torque required to lower the load is given by ; $\mathrm{T}=\mathrm{Fdm} / 2(\pi \mu \mathrm{dm}-1) /(\mu \mathrm{dm}+\mu \mathrm{l})$
b) Two shafts are connected by a means of a coupling to transmit 5hp at 1440rpm.

The flanges of the coupling are fastened by means of four bolts at a radius of 30 mm . permissible shear stress in the bolts is $=3 \mathrm{~kg} / \mathrm{mm}^{2}$. Design the bolt. [10]
c) Show that the resultant load in the bolts in bolted joins in tension is given by;
$\mathrm{Fb}=\mathrm{kb} \mathrm{P} /(\mathrm{km}+\mathrm{km})+\mathrm{Fi}^{\prime}$
QUESTION 4
Design a spindle for a milling machine to transmit from the motor to the cutter. The maximum power to be transmitted is $5 \mathrm{H} . \mathrm{P}$ at $800 \mathrm{r} . \mathrm{pm}$. The angular deflection of the shaft for this service should not exceed 0.25^{0} per metre length of spindle. The modulus of rigidity of the material is $0.84 \times 10^{4} \mathrm{~kg} / \mathrm{mm}^{2}$. Determine also shear stress in the shaft. [20]

QUESTION 5

a) What are the design considerations of a power screw drive?
b) Outline a procedure that can be adopted in designing of power screws
c) A square key is to be used to key a gear to a 35 mm diameter shaft. The hub length of the gear is 60 mm . both shaft and key are to be made of the same material, having an allowable shear stress of 55 MPa . What are the minimum dimensions of the sides of the key if 395 Nm of torque is to be transmitted?

QUESTION 6

Show that for belt drives the relations between tensions in the belt are given by $\mathrm{T} 1 / \mathrm{T} 2=\mathrm{e}^{\mu \theta}$

END OF EXAM

