FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL \& MANUFACTURING ENGINEERING

Engineering Design Principles - TIE 2107
$1^{\text {ST }}$ SEMESTER EXAMINATION - FEBRUARY 2010

Time : 3 Hours
Instructions: Answer Five Questions

QUESTION 1

From $1^{\text {st }}$ principles derive the equation for torque T required to advance a screw against a load W

QUESTION 2

a) For belt drives derive the following $\quad \frac{T_{1}-m v^{2}}{T_{2}-m v^{2}}=e^{\alpha f} \quad$ where T_{1} and T_{2} are tension in the belt and m is the mass density, v is velocity and f is friction.
b) A smaller pulley of a crossed belt drive transmits 7.5 kW at 1000 rpm . The smaller pulley has a diameter of 250 mm , velocity ratio 2 and center distant is 1.25 m . It is desired to use a flat belt 6 mm thick with expected coefficient of friction 0.3 . If the maximum allowable stress in the belt is 1.7 MPa determine the leather belt width b. Leather has a density of $970 \mathrm{~kg} / \mathrm{m}^{3}$

QUESTION 3

a) Assuming uniform wear, derive the torque capacity for one pair of surfaces pressed together with an axial force F.
b) A multiple disc clutch is composed of 5 steel and four bronze disks. The clutch is required to transmit 16 Nm torque. If the inner diameter is restricted to 50 mm , determine:
i) The necessary outer diameter of the disks and
ii) The necessary axial force.

The coefficient of friction may be taken as 0.1 and the average pressure not to exceed $350 \mathrm{kN} / \mathrm{m}^{2}$. Assume uniform wear

QUESTION 4

A gear set consists of a16-tooth pinion driving a 40 tooth gear, the module is 12 mm and the addendum and dedendum are 12 mm and 15 mm respectively.
Compute:
a) The circular pitch,
b) Center distance and
c) Radii of base circles.

QUESTION 5

A cone clutch has a cone angle of 11.5^{0}, a mean friction diameter of 320 mm , and a face with of 60 mm . The clutch is to transmit a torque of 200 Nm . The coefficient of friction is 0.26 . Find the actuating force and pressure. Use the assumption of uniform pressure.

QUESTION 6

Pinion 2 in the Fig Q6 below runs at $1800 \mathrm{revs} / \mathrm{min}$ and transmits 3 Kw to the idler gear 3. the teeth are cut on the 20° full depth system and have a module of 3 mm .
a) Draw a free body diagram of gear 3 and show all the forces which act upon it.
b) Calculate also the resultant shaft reactions.

Fig Q6

QUESTION 7

A 360 mm radius brake drum contacts a single shoe as shown in the figure Q6 and sustains 225 Nm torque at 500 rpm . For a coefficient of friction of 0.3 , determine,
i) The normal force N on the shoe
ii) The normal force F to apply the brake for clockwise rotation.
iii) The normal force F to apply the brake for counterclockwise direction
iv) The dimensions required for self locking assuming other dimensions remain as shown
v) The rate of heat generated.

Fig. 6

End of Exam

