NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY
FACULTY OF INDUSTRIAL TECHNOLOGY
DEPARTMENT OF INDUSTRIAL ENGINEERING
Bachelor of Engineering in Industrial and Manufacturing
PART III - MANUFACTURING SYSTEMS - TIE 3112

SUPPLEMENTARY EXAMINATIONS OCTOBER 2009

Time allowed: 3 hours

Instructions to students

1. Answer Any Five (5) questions

Q1 a) Discuss flowline systems in terms of two major aspects business implications of process choice.
b) Briefly describe hybrid manufacturing systems.

Q2 a) Describe briefly three objectives of a good stimulate facility layout.
b) Discuss two methods of transportation in automated flowline systems?
c) Applying Ranked Positional Weight method design an assembly line given that cycle time is 40 time units using data given in Table 2.1.
Table 2.1

Operation	Time	Immediate Predecessors
A	3	-
B	5	-
C	10	A, B
D	11	C
E	24	C
F	26	D
G	24	E
H	15	G

Q3 WXYZ company management wants to arrange six departments of it factory in a way that will minimize interdepartmental material handling costs. They make an intial assumption that each department is $20 \times 20 \mathrm{~m}$ and that the building is 60 m long and 40 m wide. Given a from -to matrix shown in Table 3.1.
a) Using flow information design the first layout possible to minimize cost
b) Determine the cost of this layout.

Table 3.1

	1	2	3	4	5	6
1	-	50	100	0	0	20
2		-	30	50	10	0
3			-	20	0	100
4				-	50	0
5					-	0
6						-

Q4 a) A five-station transfer line is being considered. All failures are expected to occur at workstations and be operation dependent. Average repair time will be 5 cycles for each station. Average failure rates are estimated to be $0.01,0.02,0.02,0.03$ and 0.02 respectively
i) Find the line availability, assuming no buffer
ii) Suppose one buffer of size 10 is to be added. Where should it be placed?
iii) Compute the effectiveness of the line with the buffer included. [10]
$x_{i}=\frac{\alpha_{i}}{b_{i}}$
$s=\frac{x_{2}}{x_{1}} \quad r=\frac{\alpha_{2}}{\alpha_{1}} \quad$ and $\mathrm{C}=\frac{\left(\alpha_{1}+\alpha_{2}\right)\left(b_{1}+b_{2}\right)-\alpha_{1} b_{2}\left(\alpha_{1}+\alpha_{2}+b_{1}+b_{2}\right)}{\left(\alpha_{1}+\alpha_{2}\right)\left(b_{1}+b_{2}\right)-\alpha_{2} b_{1}\left(\alpha_{1}+\alpha_{2}+b_{1}+b_{2}\right)}$
$\mathrm{E}_{\mathrm{Z}}=\frac{1-s C^{z}}{1+x_{1}-\left(1+x_{2}\right) s C^{z}}$
when $\mathrm{s} \neq 1$
or $\mathrm{E}_{\mathrm{Z}}=\frac{1+r-b_{2}(1+x)+Z b_{2}(1+x)}{(1+2 x)\left[1+r-b_{2}(1+x)\right]+Z b_{2}(1+x)^{2}} \quad$ when $\mathrm{s}=1$
Q 5 a) Discuss five methods of comparing facility layout in a factory.
[10]
b) Briefly explain five factors that one would use in the choosing of method of transfer of parts. [10]

Q6 a) Briefly explain two mode of failure.
b) Three models A, B\&C of a particular product are assembled concurrently on an assembly line. The quantities required over a given period and the model cycle times are as shown in Table 6.1.

Table 6.1

Model	No of unitsRequired	Model cycle time

j	N	Cj
A	6	0.5
B	11	0.6
C	5	0.8

Calculate the fixed interval at which units must be launched onto the line, and show how the sequence of models might be determined in order to avoid station idle time: [8]
c) How would you sequence the batches shown in Table 6.2.

Table 6.2

Cost	Succeeding Model			
	A	B	C	D
A	0	10	15	8
B	5	0	10	7
C	8	4	0	11
D	12	10	6	0

