NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

Bachelor of Engineering (Honours) Degree in Industrial and Manufacturing Engineering

COURSE: MANUFACTURING SYSTEMS

CODE: TIE 3112

1st SEMESTER SUPPLEMENTARY EXAMINATIONS – 2012

EXAMINATION DURATION: 3 HOURS

INSTRUCTIONS TO CANDIDATES

There are seven (7) questions, answer ANY FIVE. Each question carries 20 marks.

QUESTION 1

- a) Outline the importance of a buffer in transfer line systems. [4]
 b) A five station transfer line is being considered. All failures are expected to occur at workstations and be operation dependant. Average repair time will be 5 cycles for each station. Average failure rates are estimated to be 0.01, 0.02, 0.02, 0.03 and 0.02 respectively.
 - i) Calculate the effectiveness of the line if no buffers are used. [4]ii) Suppose one buffer of size 10 is to be added, where should it be placed? [6]
 - iii) Calculate the effectiveness of the line with the buffer included. [6]

QUESTION 2

- a) Outline the steps involved in systematic layout planning (SLP). [6]
- b) Table Q2b shows five customers that can be served from any of the three locations A(x = 80, y=20), B(x = 100, y = 30) or C(x = 50, y = 30). The load/unload cost, $L_k = 2.50 per trip and the cost per unit distance, $C_k = $0.05/m$ for customers 1 and 2 and $L_k = 3.20 per trip and $C_k = $0.002/m$ for customers 3, 4, and 5.

Determine the best location.

Tuble Q20. Customer Data for Question 2 b							
Customer	Co-ordinate		No of trips	movement			
	Х	У	per period	type			
1	40	60	250	Straight line			
2	60	70	165	Rectangular			
3	80	70	201	Straight line			
4	40	30	104	Straight line			
5	10	80	306	Rectangular			

Table Q2b: Customer Data for Question 2 b

QUESTION 3

An assembly line consists of eight work elements as shown in Table Q3. Assuming a cycle time of 20 minutes, you are required to design a well balanced assembly line.

Task	$T_{ej}(min)$	Immediate Predecessor
1	11	-
2	8	1
3	9	2
4	5	2
5	8	3
6	12	3,4
7	10	5
8	3	6

a) Use the Ranked Positional Weight method to balance the assembly line. [14]

b) Explain three ways of eliminating bottleneck stations in assembly lines. [6]

[16]

QUESTION 5

- a) Distinguish the product layout from the process layout.
- b) The material flows between four equal sized departments are given in Table Q5. The cost of moving one unit per unit distance is \$4.00. Assuming the given starting solution for the facility layout, use the pair-wise exchange method to refine the current given solution.

[16]

[4]

			To dept		
From Dept		1	2	3	4
	1	-	15	40	25
	2		-	5	10
	3			-	15
	4				-

Table	<i>Q</i> 5:	Material	Flow	Matrix
-------	-------------	----------	------	--------

Starting	1	2	3	4
Solution				

QUESTION 6

a) The costs of setting up a given multi-model assembly and the succeeding models are shown in Table Q6. Use the Hungarian method to find the order of the model batches to minimize the total set-up costs. [10]

Table	<i>Q6</i> :	Cost o	f setting	up line
-------	-------------	--------	-----------	---------

	Succeeding Model			
	Α	В	С	D
Α	-	100	150	80
В	50	-	100	75
С	80	40	-	110
D	115	100	60	-

b)	Distinguish between cellular layout and functional layout.	[4]
----	--	-----

c) Outline the advantages of cellular layout over functional layout . [6]

QUESTION 7

- a) Explain the following reasons why a station may be "down":
 - i) station failure
 - ii) total line failure
 - iii) station blocked
 - iv) station starved
- b) Using an appropriate table describe the classes and the varieties of flow lines.

[12]

[8]