NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

Bachelor of Engineering (Honours) Degree in Industrial and Manufacturing

 EngineeringCOURSE: MANUFACTURING SYSTEMS
CODE: TIE 3112
$1{ }^{\text {st }}$ SEMESTER SUPPLEMENTARY EXAMINATIONS - 2012

EXAMINATION DURATION: 3 HOURS

INSTRUCTIONS TO CANDIDATES
There are seven (7) questions, answer ANY FIVE. Each question carries 20 marks.

QUESTION 1

a) Outline the importance of a buffer in transfer line systems.
[4]
b) A five station transfer line is being considered. All failures are expected to occur at workstations and be operation dependant. Average repair time will be 5 cycles for each station. Average failure rates are estimated to be $0.01,0.02,0.02,0.03$ and 0.02 respectively.
i) Calculate the effectiveness of the line if no buffers are used.
ii) Suppose one buffer of size 10 is to be added, where should it be placed?
iii) Calculate the effectiveness of the line with the buffer included.

QUESTION 2

a) Outline the steps involved in systematic layout planning (SLP).
b) Table Q2b shows five customers that can be served from any of the three locations $\mathrm{A}(\mathrm{x}=$ $80, y=20), B(x=100, y=30)$ or $C(x=50, y=30)$. The load/unload cost, $L_{k}=\$ 2.50$ per trip and the cost per unit distance, $\mathrm{C}_{\mathrm{k}}=\$ 0.05 / \mathrm{m}$ for customers 1 and 2 and $\mathrm{L}_{\mathrm{k}}=\$ 3.20$ per trip and $C_{k}=\$ 0.002 / \mathrm{m}$ for customers 3,4 , and 5 .

Determine the best location.
Table Q2b: Customer Data for Question 2 b

Customer	Co-ordinate		No of trips	movement
	x	y	per period	type
1	40	60	250	Straight line
2	60	70	165	Rectangular
3	80	70	201	Straight line
4	40	30	104	Straight line
5	10	80	306	Rectangular

QUESTION 3

An assembly line consists of eight work elements as shown in Table Q3. Assuming a cycle time of 20 minutes, you are required to design a well balanced assembly line.

Table Q3: Element Description and Data for Question 4

Task	$\mathrm{T}_{\mathrm{ej}}(\min)$	Immediate Predecessor
1	11	-
2	8	1
3	9	2
4	5	2
5	8	3
6	12	3,4
7	10	5
8	3	6

a) Use the Ranked Positional Weight method to balance the assembly line.
b) Explain three ways of eliminating bottleneck stations in assembly lines.

QUESTION 5

a) Distinguish the product layout from the process layout.
b) The material flows between four equal sized departments are given in Table Q5. The cost of moving one unit per unit distance is $\$ 4.00$. Assuming the given starting solution for the facility layout, use the pair-wise exchange method to refine the current given solution.

Table Q5: Material Flow Matrix

	To dept				
From Dept		1	2	3	4
	1	-	15	40	25
	2		-	5	10
	3			-	15
	4			-	

Starting Solution

1	2	3	4

QUESTION 6

a) The costs of setting up a given multi-model assembly and the succeeding models are shown in Table Q6. Use the Hungarian method to find the order of the model batches to minimize the total set-up costs.

Table Q6: Cost of setting up line

	Succeeding Model			
	A	B	C	D
A	-	100	150	80
B	50	-	100	75
C	80	40	-	110
D	115	100	60	-

b) Distinguish between cellular layout and functional layout.
c) Outline the advantages of cellular layout over functional layout.

QUESTION 7

a) Explain the following reasons why a station may be "down":
i) station failure
ii) total line failure
iii) station blocked
iv) station starved
b) Using an appropriate table describe the classes and the varieties of flow lines.

