NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

B-Eng Hons Industrial and Manufacturing Engineering

Supplementary Examination

- COURSE : MANUFACTURING SYSTEMS I
- **CODE** : **TIE 3112**
- DATE : AUGUST 2013
- **DURATION** : 3 HOURS

INSRTUCTIONS AND INFORMATION TO CANDIDATE

- 1. Answer ANY five questions.
- 2. All questions carry **<u>20 marks</u>** each.
- 3. This paper contains seven (7) questions.
- 4. There are five (4) printed pages.

QUESTION 1

- a) Outline the importance of a buffer in transfer line systems. [4]
 b) A five station transfer line is being considered. All failures are expected to occur at workstations and be operation dependant. Average repair time will be 5 cycles for each station. Average failure rates are estimated to be 0.01, 0.02, 0.02, 0.03 and 0.02 respectively.
 - i) Calculate the effectiveness of the line if no buffers are used. [4]
 - ii) Suppose one buffer of size 10 is to be added, where should it be placed? [6]
 - iii) Calculate the effectiveness of the line with the buffer included. [6]

QUESTION 2

- a) Outline the steps involved in systematic layout planning (SLP). [6]
- b) Table Q2b shows five customers that can be served from any of the three locations A(x = 80, y=20), B(x = 100, y = 30) or C(x = 50, y = 30). The load/unload cost, $L_k = 2.50 per trip and the cost per unit distance, $C_k = $0.05/m$ for customers 1 and 2 and $L_k = 3.20 per trip and $C_k = $0.002/m$ for customers 3, 4, and 5. Determine the best location. [14]

Co-ordinate Customer No of trips movement per period Х v type 40 Straight line 1 60 250 2 60 70 165 Rectangular 70 Straight line 3 80 201 4 40 30 104 Straight line 5 10 80 306 Rectangular

Table Q2b: Customer Data or Question 2 b

QUESTION 3

An assembly line consists of eight work elements as shown in Table Q3. Assuming a cycle time of 20 minutes, you are required to design a well balanced assembly line.

Table Q5: Element Description and Data for Question 5				
Task	$T_{ej}(min)$	Immediate Predecessor		
1	11	-		
2	8	1		
3	9	2		
4	5	2		
5	8	3		
6	12	3,4		
7	10	5		
8	3	6		

 Table Q3: Element Description and Data for Question 3

i) Use the Ranked Positional Weight method to balance the assembly line. [14]

ii) Explain three ways of eliminating bottleneck stations in assembly lines. [6]

QUESTION 5

- a) Distinguish the product layout from the process layout.
- b) The material flows between four equal sized departments are given in Table Q5. The cost of moving one unit per unit distance is \$4.00. Assuming the given starting solution for the facility layout, use the pair-wise exchange method to refine the current given solution.

[16]

[4]

~		To dept			
		1	2	3	4
From Dept	1	-	15	40	25
	2		-	5	10
	3			-	15
	4				-

 Table Q5: Material Flow Matrix

Starting	1	2	3	4
Solution				

QUESTION 6

a) The costs of setting up a given multi-model assembly and the succeeding models are shown in Table Q6. Use the Hungarian method to find the order of the model batches to minimize the total set-up costs. [10]

Table Q6: Cost of setting up line

	Succeeding Model			
	Α	В	С	D
Α	-	100	150	80
В	50	-	100	75
С	80	40	-	110
D	115	100	60	-

- b) Distinguish between cellular layout and functional layout. [4]
- c) Outline the advantages of cellular layout over functional layout . [6]

QUESTION 7

- a) Explain the following reasons why a station may be "down":
 - i) station failure
 - ii) total line failure
 - iii) station blocked
 - iv) station starved
- b) Using an appropriate table describe the classes and the varieties of flow lines.

[12]

[8]

END OF EXAMINATION