NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

BACHELOR OF ENGINEERING (HONOURS) DEGREE IN INDUSTRIAL AND MANUFACTURING ENGINEERING

FIRST SEMESTER EXAMINATION DECEMBER 2011

INDUSTRIAL INSTRUMENTATION AND CONTROL

COURSE CODE - TIE 3114

EXAMINATION DURATION 3 HOURS

INSTRUCTIONS TO CANDIDATE

- 1. Answer Five (5) questions at least one from each section
- 2. Each Question carries (20 marks) and there are Six Questions

SECTION A

QUESTION 1

a) Briefly explain the following errors:

	i)	Zero drift.	[2]
	ii)	Insertion error.	[2]
b)	Why	is it important to know the following properties of an instrument?	
	• \		

- i) Range. [2] ii) Sensitivity. [2]
- c) In any general measurement situation, it is very difficult to avoid modifying inputs. Which techniques are used to minimise their effect on the final output measurement? [8]
- d) The voltage across a resistance R_5 in the circuit of Figure Q1 is to be measured by a voltmeter connected across it. If the voltmeter has an internal resistance (R_m) of 4750 Ω what is the measurement error? [4]

Figure Q1 Measurement circuit

QUESTION 2

a) A load cell is calibrated in an environment at a temperature of 21°C and has the following deflection/load characteristic:

Load (kg)	0	50	100	150	200
Deflection (mm)	0.0	1.0	2.0	3.0	4.0

When used in an environment at 35°C, its characteristic changes to the following:

Load (kg)	0	50	100	150	200
Deflection (mm)	0.2	1.3	2.4	3.5	4.6

[4]

[4]

- i) Determine the sensitivity at 21°C and 35°C.
- ii) Calculate the total zero drift and sensitivity drift at 35°C.

- iii) Hence determine the zero drift and sensitivity drift coefficients (in units of μm/°C and (μm per kg)/(°C)).
- b) You are using the instrument in Figure Q2 and you feel its sensitivity is very low. Suggest how you can improve its sensitivity. [4]
- c) In what ways can the act of measurement cause a disturbance in the system being measured?

[4]

[4]

Figure Q2 Measurement system

SECTION B

QUESTION 3

a)	Explain the operation of the following sensors:	
	i) Load cell.	[4]
	ii) Bubbler devices.	[4]
b)	Explain with aid of diagrams principle of operation of an optical pyrometer.	[6]
c)	What are the environmental concerns that have to be catered for when using differential p	ressure
	detector.	[6]

QUESTION 4

- a) A pressure gauge located at the base of an open tank containing a liquid with a specific weight of 13.6 kN/m³ registers 1.27 MPa. What is the depth of the fluid in the tank? [4]
- b) Explain with aid of diagrams the principle of operation of an Electromagnetic flow meter. [6]
- c) Explain with aid of diagrams how you can use load cells to monitor the level of a liquid in a tank.
 [6]
- d) Give two advantages and two disadvantages of a venturi meter.

SECTION C

QUESTION 5

The company you were attached to gets a tender to design the new highly automated Delta Beverages plant in Bulawayo. The projects manager assigns you to design a boiler feeding system that will maintain the temperature, water level and pressure on the boiler constant.

- a) Select the suitable instruments you will use for the system and give a reason why you chose them. [9]
- b) Using a block diagram show how your sensors will be connected to the control system. [5]
- c) Explain how the changes in the environment will affect your system. [6]

QUESTION 6

a) The company you were attached to is losing production time in trying to measure the level of a conductive instrument using the dipping system.

	i)	Suggest an instrument that will replace the dipping system to reduce losses in produc	tion
		time.	[2]
	ii)	Explain its principle of operation using diagrams.	[8]
b)	What	t are the disadvantages of using the instrument given in Question 6a(i)?	[4]
c)	Instru	uments are classified as active or passive instruments. In which category does	the
	instru	ument fall?	[2]
d)	What	t are the two advantages that active instruments have over passive ones?	[4]

END OF EXAM