

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

BACHELOR OF ENGINEERING (HONS) DEGREE INDUSTRIAL AND MANUFACTURING ENGINEERING

CONCURRENT ENGINEERING I

TIE 3119

First Semester Main Examination Paper

December 2014

This examination paper consists of 5 pages

Time Allowed: 3 hours

Total Marks: 100

Special Requirements: N/A

Examiner's Name: N. Gwangwava

INSTRUCTIONS

- 1. Answer any four (4) questions
- 2. Each question carries 25 marks
- 3. Use of calculators is permissible

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
5.	25
6.	25
TOTAL	100

Page 1 of 5

Copyright: National University of Science and Technology, 2014

Question 1

- a) Explain, with the aid of well annotated diagrams, the difference between concurrent engineering and the traditional sequential approach to new product research and development.
- b) Identify and explain new technology push and market pull factors that are influencing the forward movement of the refrigerator product. [10]
- c) A local manufacturing firm has decided to invest in new product research and development as a strategy to boost its business. State and explain any three areas where the firm can channel its financial resources. [9]

Question 2

- a) Define and explain the importance of benchmarking in new product research and development. [2]
- b) List any five (5) steps that you follow in order to carryout an effective benchmarking exercise. [5]
- c) Table Q2c below shows a matrix of candidate '*Technical Performance Measures*' *TPMs*, state typical examples of TPMs under each category as indicated in the Table Q2c.

Table Q2c: Candidate TPMs

Information Category	Measurable Concept	Typical TPM example
Product Size and Stability	Physical Size and Stability	[1]
		[1]
Product Quality	Functional Correctness	[1]
		[1]
Technology Effectiveness	Technology Suitability	[1]

- d) State three (3) different methods that can be used to gather the customer's voice (Needs or Whats) for deployment into the first house of quality (HOQ). [3]
- e) Use the Quality Function Deployment- QFD technique to populate the first house of quality-HOQ for any product design of your choice. [10]

Question 3

a) Define the term 'concept' as used in product design.

- [1]
- b) Concept generation methods can be classified into basic and logical methods. Identify any two methods that fall under each of the following concept generation categories;
 - i. Basic methods [2]
 - ii. Logical methods [2]
- c) State the ten (10) steps followed in concept generation and selection. [10]
- d) Decompose the problem of designing a new rice cooker using the functional decomposition approach. [10]

Question 4

- a) What is the purpose of a reference concept in the concept selection process? [1]
- b) The concept screening process carried out by the product development team of a particular company yielded the concept scoring matrix shown in Table Q4b, complete the matrix and recommend the best concept for further development to the team. [16]

Table Q4b: Concept scoring matrix

	Concept									
	Ma		A (Reference) Master Cylinder		DF Lever Stop		E Swash Ring		G+ Dial Screw+	
Selection Criteria		Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score	
Ease of handling	5%	3		3		4		4		
Ease of use	15%	3		4		4		3		
Readability of settings	10%	2		3		5		5		
Dose metering accuracy	25%	3		3		2		3		
Durability	15%	2		3 5 3		4		3		
Ease of manufacture	20%	3		3		2		2		
Portability	10%	3		3		3		3		
	Total Score Rank									
	Continue?									

Page 1 of 5

c)	What are the benefits of a structured m	nethod for concept selection	n? [4]					
d)	d) State any four common pitfalls in concept selection.							
Qu	estion 5							
a)	Define the term 'Industrial Design' [2]							
b)	State any four (4) critical goals that industrial designers can help to achieve when developing new products. [4]							
c)	Contrast modular product design with headlines provided under the matrix in		et design approach using the [6]					
	Table Q5c: Conventional Versus N	Aodular Product Design						
		Design Approach	Development Approach					
	Conventional Product Design:							
	Modular Product Design:							
d)	State three (3) specific advantages the direct result of implementing modular	_	lepartments can achieve as a					
	i. Research and Development	e ,	[3]					
	ii. Manufacturing,		[3]					
	iii. Procurement.		[3]					
e)	Identify any four (4) modularization m	nethods used in product de-	velopment. [4]					
Qu	estion 6							
a)) What is Intellectual Property (IP)? [2]							
b)	State and explain, with the aid of examples, two classes of IP. [8]							
c)	Identify any three (3) driving forces for	or innovation.	[3]					
		Page 1 of 5						

d) The transformation process from the idea to the realization of the innovation undergoes through three critical milestones (CM). Briefly explain, with the aid of a simple sketch, the processes that take place at each of the three (3) critical milestones;

i. Critical Milestone 1 (CM₁)
ii. Critical Milestone 2 (CM₂)
iii. Critical Milestone 3 (CM₃)

End of Examination

Page 1 of 5