# NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

# FACULTY OF INDUSTRIAL TECHNOLOGY

## DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

**Bachelor of Engineering Honours Degree Industrial & Manufacturing Engineering** 

## Manufacturing Systems – TIE 3212

## 2<sup>nd</sup> SEMESTER EXAMINATIONS AUGUST 2009

*Time allowed*: 3 hours *Instructions:* Answer ANY FOUR (4) questions from section A and The question in Section B

#### **Question 1**

- (a) Outline three tangible and three intangible benefits of implementing Group Technology. [6]
- (b) Give three differences between the monocode and the polycode coding systems. [4]
- (c) Consider the parts summarized in Table 1. The shop is a flow shop.
  - (i) Find a lower bound on make span [5]
- (ii) Generate a permutation schedule using Campbell's procedure [5]

Table 1: Flow shop processing times

|     | Machine |   |   |    |  |  |
|-----|---------|---|---|----|--|--|
| Job | А       | В | С | D  |  |  |
| 1   | 1       | 4 | 2 | 5  |  |  |
| 2   | 4       | 2 | 9 | 11 |  |  |
| 3   | 1       | 6 | 8 | 3  |  |  |
| 4   | 3       | 4 | 2 | 2  |  |  |
| 5   | 7       | 1 | 1 | 5  |  |  |

## **Question 2**

Consider the 10-part, 12-machine data of Table Q2. Find the natural grouping s of parts and

machines using the Binary ordering Algorithm

Table Q2

| Part | Sequence of Machines Visited |
|------|------------------------------|
| 1    | 10, 7, 8, 9                  |
| 2    | 1, 3, 5, 4, 4, 10            |
| 3    | 6, 12, 2                     |
| 4    | 4, 11, 3                     |
| 5    | 6, 4, 3, 1                   |
| 6    | 9, 8, 7, 12                  |
| 7    | 6, 4, 1, 10                  |
| 8    | 5, 4, 3, 10                  |
| 9    | 10, 9, 8                     |
| 10   | 7, 10, 9, 8, 12              |

[20]

## **Question 3**

a) Given eight jobs to be produced on a single milling machine with data

Shown in Table 3.1

| Job I                   | 1  | 2  | 3 | 4  | 5  | 6  | 7  | 8  |
|-------------------------|----|----|---|----|----|----|----|----|
| Processing              | 10 | 9  | 2 | 24 | 13 | 1  | 3  | 5  |
| time p <sub>I</sub>     |    |    |   |    |    |    |    |    |
| Due Date d <sub>i</sub> | 40 | 34 | 8 | 12 | 65 | 42 | 29 | 51 |

Table 3.1: Processing time and Due dates

- i) Schedule the lathe to minimise average flow time [1]ii) Find the average flow time and maximum tardiness for the schedule
- Obtained in (i) above[4]iii)Schedule the lathe to minimise maximum tardiness[1]
- iv) Find the average flow time and maximum tardiness for the schedule obtained in (ii)

[4]

b) Given that the processing times for the jobs given in Table 3.1 on the polishing machine is as shown in Table 3.2

Table 3.2: Processing time on Polishing machine

| Job        | 1  | 2   | 3 | 4 | 5  | 6  | 7   | 8 |
|------------|----|-----|---|---|----|----|-----|---|
| Processing | 13 | 2.5 | 2 | 8 | 12 | 10 | 2.8 | 9 |
| time       |    |     |   |   |    |    |     |   |

i) Using Johnson's Algorithm find the sequence for the jobs in the wholePlant (milling and polishing machine) with an aim to minimizing makes span

[4]

ii) Find the make span of the jobs for sequence 1,2,3,4,5,6,7,8 [6]

## **Question 4**

Given that NIMESS has eight jobs with the following information given in Table 1.1

| Table 4.1. Olders III NIMESS |            |           |  |  |  |  |
|------------------------------|------------|-----------|--|--|--|--|
| Job                          | Processing | Due dates |  |  |  |  |
|                              | Times      |           |  |  |  |  |
| 1                            | 13.4       | 52        |  |  |  |  |
| 2                            | 2.4        | 24        |  |  |  |  |
| 3                            | 1.8        | 38        |  |  |  |  |
| 4                            | 7.9        | 51        |  |  |  |  |
| 5                            | 12.3       | 47        |  |  |  |  |
| 6                            | 10.5       | 70        |  |  |  |  |
| 7                            | 2.4        | 71        |  |  |  |  |
| 8                            | 8.1        | 72        |  |  |  |  |

| i. | Schedule the | e jobs to r | ninimis | e average | flow tin | ne | [1] |
|----|--------------|-------------|---------|-----------|----------|----|-----|
|    |              | ~           |         |           |          |    |     |

- ii.Find the average flow time for schedule obtained in (i)above[2]iii.Schedule the jobs to minimise maximum lateness.[1]
- iv. Find the maximum lateness for the schedule in (iii)above [2]
- a) Schedule to minimise make span the jobs given in Table 1.2 below [2]
  - Table 4.2

| Job         | Welding | Painting |
|-------------|---------|----------|
| 1           | 4       | 2        |
| 2           | 5       | 3        |
| 2<br>3      | 12      | 1        |
| 4           | 8       | 7        |
| 4<br>5<br>6 | 6       | 5        |
| 6           | 4       | 1        |
| 7           | 8       | 4        |

b) Find the make span for job sequence 3,4,2,1.

[6]

Table 4.3Flow shop processing times

|     | Machine |     |     |     |  |  |
|-----|---------|-----|-----|-----|--|--|
| Job | 1       | 2   | 3   | 4   |  |  |
| 1   | 2.0     | 1.5 | 2.0 | 3.5 |  |  |
| 2   | 4.5     | 2.5 | 1.0 | 3.0 |  |  |
| 3   | 1.5     | 5.0 | 0.5 | 1.5 |  |  |
| 4   | 4.0     | 2.5 | 0.5 | 1.0 |  |  |

c) What are six major factors to be considered in selecting a coding scheme? [6]

# **Question 5**

Six jobs are waiting at a milling station. Job data are provided in Table 5 below. Current queue lengths at inspection, grinding, turning, and drilling are 12.0 hours, 4.5 hours, 3.9 hours and 0.0 hours, respectively. However, on the average each station requires a 5-hour wait. Find the corresponding sequence for the following dispatching rules. The current is 20:

| (a) SPT    | [2] |
|------------|-----|
| (b) RANDOM | [2] |
| (c) EDD    | [2] |
| (d) LTWR   | [2] |
| (e) LTWK   | [2] |
| (f) MOPNR  | [2] |
| (g) MWKR   | [2] |
| (h) WINQ   | [2] |
| (i) MWKR   | [2] |
| (j) S/RO   | [2] |

Table 5: Available Milling jobs

|     |            |            |          | Operation (machine, pij) |            |              |  |
|-----|------------|------------|----------|--------------------------|------------|--------------|--|
| Job | Arrival to | Arrival at | Due date | 1                        | 2          | 3            |  |
|     | system     | mill       |          |                          |            |              |  |
| 1   | 10         | 10         | 30       | (Mill, 5)                | (Turn, 3)  | (Drill, 5)   |  |
| 2   | 0          | 0          | 20       | (Mill, 3)                | (Grind, 4) | (Inspect, 1) |  |
| 3   | 5          | 12         | 35       | (Drill, 4)               | (Mill, 6)  | -            |  |
| 4   | 7          | 18         | 26       | (Turn, 3)                | (Mill, 7)  | (Inspect, 3) |  |
| 5   | 12         | 12         | 45       | (Mill, 10)               | (Grind, 4) | (Inspect, 3) |  |

#### **Question 6**

(a) Describe the following terms used in Group technology:

|     | (i) Design attributes                                                                   | [4] |
|-----|-----------------------------------------------------------------------------------------|-----|
|     | (ii) Part Manufacturing features.                                                       | [4] |
| (b) | Explain five structural issues considered in cell design.                               | [5] |
| (c) | A part design is shown in Figure 6.1 below. Develop a form code using the Optiz system. | [5] |
| (d) | Describe the family of parts with an optuz form code of 12532                           | [2] |



Figure 6.1

#### **SECTION B**

#### **Question 7** Table 7 below shows a Machine- Part Matrix

|         | Part |   |   |   |   |   |   |   |  |
|---------|------|---|---|---|---|---|---|---|--|
| Machine | 1    | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| А       | 1    | 1 | 1 |   | 1 | 1 | 1 |   |  |
| В       |      | 1 | 1 | 1 | 1 |   |   | 1 |  |
| С       |      | 1 | 1 |   | 1 |   |   | 1 |  |
| D       | 1    |   | 1 | 1 |   | 1 | 1 |   |  |

(a) Table 7 above illustrates a machine/part matrix for a toy manufacturing plant.

| Use the similarity coefficients method to develop natural manufacturing cells. | [4] |
|--------------------------------------------------------------------------------|-----|
|                                                                                |     |

- (b) Draw the dendogram for the manufacturing cells in (a) [3]
- (c) Which cell configuration is the best considering that the total cost of inter cell movements,
  - C1 =\$1.20 and the total cost of intracell movement C2 =\$1.50 [7]
- (d) Give 3 benefits of cell based manufacturing over the traditional approaches? [6]

## END OF EXAM