FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

Bachelor of Engineering Honours Degree Industrial \& Manufacturing Engineering
Manufacturing Systems - TIE 3212
$2^{\text {nd }}$ SEMESTER EXAMINATIONS AUGUST 2009
Time allowed: 3 hours
Instructions: Answer ANY FOUR (4) questions from section A and The question in Section B

Question 1

(a) Outline three tangible and three intangible benefits of implementing Group Technology. [6]
(b) Give three differences between the monocode and the polycode coding systems.
(c) Consider the parts summarized in Table 1. The shop is a flow shop.
(i) Find a lower bound on make span
(ii) Generate a permutation schedule using Campbell's procedure

Table 1: Flow shop processing times

	Machine			
Job	A	B	C	D
1	1	4	2	5
2	4	2	9	11
3	1	6	8	3
4	3	4	2	2
5	7	1	1	5

Question 2

Consider the 10-part, 12-machine data of Table Q2. Find the natural grouping s of parts and machines using the Binary ordering Algorithm

Table Q2

Part	Sequence of Machines Visited
1	$10,7,8,9$
2	$1,3,5,4,4,10$
3	$6,12,2$
4	$4,11,3$
5	$6,4,3,1$
6	$9,8,7,12$
7	$6,4,1,10$
8	$5,4,3,10$
9	$10,9,8$
10	$7,10,9,8,12$

Question 3

a) Given eight jobs to be produced on a single milling machine with data

Shown in Table 3.1
Table 3.1: Processing time and Due dates

Job I	1	2	3	4	5	6	7	8
Processing time p_{I}	10	9	2	24	13	1	3	5
${\text { Due Date } \mathrm{d}_{\mathrm{i}}}^{2} 40$	34	8	12	65	42	29	51	

i) Schedule the lathe to minimise average flow time
ii) Find the average flow time and maximum tardiness for the schedule Obtained in (i)above
iii) Schedule the lathe to minimise maximum tardiness
iv) Find the average flow time and maximum tardiness for the schedule obtained in (ii)
b) Given that the processing times for the jobs given in Table 3.1 on the polishing machine is as shown in Table 3.2
Table 3.2: Processing time on Polishing machine

Job	1	2	3	4	5	6	7	8
Processing time	13	2.5	2	8	12	10	2.8	9

i) Using Johnson's Algorithm find the sequence for the jobs in the whole Plant (milling and polishing machine) with an aim to minimizing makes span
ii) Find the make span of the jobs for sequence 1,2,3,4,5,6,7,8

Question 4

Given that NIMESS has eight jobs with the following information given in Table 1.1
Table 4.1: Orders in NIMESS

Job	Processing Times	Due dates
1	13.4	52
2	2.4	24
3	1.8	38
4	7.9	51
5	12.3	47
6	10.5	70
7	2.4	71
8	8.1	72

i. Schedule the jobs to minimise average flow time
ii. Find the average flow time for schedule obtained in (i)above
iii. Schedule the jobs to minimise maximum lateness.
iv. Find the maximum lateness for the schedule in (iii)above
a) Schedule to minimise make span the jobs given in Table 1.2 below

Table 4.2

Job	Welding	Painting
1	4	2
2	5	3
3	12	1
4	8	7
5	6	5
6	4	1
7	8	4

b) Find the make span for job sequence 3,4,2,1.

Table 4.3 Flow shop processing times

	Machine			
Job	1	2	3	4
1	2.0	1.5	2.0	3.5
2	4.5	2.5	1.0	3.0
3	1.5	5.0	0.5	1.5
4	4.0	2.5	0.5	1.0

c) What are six major factors to be considered in selecting a coding scheme?

Question 5

Six jobs are waiting at a milling station. Job data are provided in Table 5 below. Current queue lengths at inspection, grinding, turning, and drilling are 12.0 hours, 4.5 hours, 3.9 hours and 0.0 hours, respectively. However, on the average each station requires a 5 -hour wait. Find the corresponding sequence for the following dispatching rules. The current is 20 :
(a) SPT
(b) RANDOM
(c) EDD
(d) LTWR
(e) LTWK
(f) MOPNR
(g) MWKR
(h) WINQ
(i) MWKR
(j) S / RO

Table 5: Available Milling jobs

				Operation (machine, pij)		
Job	Arrival to system	Arrival at mill	Due date	1	2	3
1	10	10	30	(Mill, 5)	(Turn, 3)	(Drill, 5)
2	0	0	20	(Mill, 3)	(Grind, 4)	(Inspect, 1)
3	5	12	35	(Drill, 4)	(Mill, 6)	-
4	7	18	26	(Turn, 3)	(Mill, 7)	(Inspect, 3)
5	12	12	45	(Mill, 10)	(Grind, 4)	(Inspect, 3)

Question 6

(a) Describe the following terms used in Group technology:
(i) Design attributes
(ii) Part Manufacturing features.
(b) Explain five structural issues considered in cell design.
(c) A part design is shown in Figure 6.1 below. Develop a form code using the Optiz system. [5]
(d) Describe the family of parts with an optuz form code of 12532

Figure 6.1

SECTION B

Question 7
Table 7 below shows a Machine- Part Matrix

	Part								
Machine	1	2	3	4	5	6	7	8	
A	1	1	1		1	1	1		
B		1	1	1	1			1	
C		1	1		1			1	
D	1		1	1		1	1		

(a) Table 7 above illustrates a machine/part matrix for a toy manufacturing plant.

Use the similarity coefficients method to develop natural manufacturing cells.
(b) Draw the dendogram for the manufacturing cells in (a)
(c) Which cell configuration is the best considering that the total cost of inter cell movements, C1 $=\$ 1.20$ and the total cost of intracell movement $\mathrm{C} 2=\$ 1.50$
(d) Give 3 benefits of cell based manufacturing over the traditional approaches?

END OF EXAM

