NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Industrial Technology

Department of Industrial and Manufacturing Engineering

BEng. Degree in Industrial and Manufacturing Engineering

MANUFACTURING PROCESSES II - TIE 3213

2nd Semester Examination

August 2009

Instructions to Candidates

1. Examination length is **3hrs**.

- 2. Each question carries twenty (20) marks and there are six (6) questions in total.
- 3. Attempt the whole of Section A and three questions from Section B.

Section A

Question 1

- What is the difference between deep drawing and wire drawing? a) [4]
- Draw a schematic illustration of a deep drawing operation with a circular punch, b) indicating the die radius, punch diameter, and punch corner radius. [6]
- A cooking pot of 300 mm outside diameter, 200 mm depth, 3 mm wall thickness, c) and 5 mm bottom thickness is to be made from an aluminium alloy by deep drawing. The UTS of the alloy is 190MPa. Determine
- (i) The punch diameter [2]
- (ii) Starting blank diameter [3] [3]
- The maximum drawing force (iii)
- Hold-down pressure is a significant parameter in deep drawing operations. d) Explain the likely outcome if
- Hold-down pressure is zero (i) [1] [1]
- (ii) Hold-down pressure is excessive

Question 2

Discuss the design aspects that have to be considered in impression die forging. a)

[7]

[2]

In preparation of forging a large gear blank, a high carbon steel billet of 200 mm b) diameter and 500 mm height is upset at 1000°C to a 100 mm thick flat disk. A graphite lubricant is used and lowers friction to μ =0.2. Strength coefficient C = 120 MPa and strain rate sensitivity exponent m = 0.13. A hydraulic press with a speed of 4m/min is used. The frictional shear factor is twice the coefficient of friction.

(1) Malia a aliatab at the amongstion	[0]
(1) Wrake a sketch of the operation.	[3]

- Calculate the average die pressure. (ii) [8]
- Determine the forging force. (iii)

Section B

Questi	Question 3		
<u>vucsu</u> a)	Describe the roll pass sequence used in rolling of metals	[6]	
b)	A 100-mm-wide, 2-mm-thick strip is flat rolled to a gauge thickness of	0.7 mm.	
-)	Measurements reveal that the strip width has increased to 110 mm. Wh	at is the	
	strain in the rolling direction?	[6]	
c)	A phosphor bronze strip of $w = 20$ mm and $h = 15$ mm is cold-rolled to 20	1° of its	
•)	original height in a single pass, on a mill with 150 mm diameter rolls	at v =	
	0.8m/s, with a mineral oil lubricant ($\mu = 0.07$). Strength coefficient K is 7	20 MPa	
	and strain hardening exponent n is 0.46.		
(i)	Calculate the roll force.	[6]	
(ii)	What is the power requirement?	[2]	
Ouestion 4			
a)) Compare the properties of components produced by cold and hot metal extrusion.		
,		[6]	
b)	Commercial purity aluminium billets of 300 mm diameter are extruded a	t 500°C,	
	with a ram speed of 0.6m/min, into 150-mm-diameter bars. Assuming	a dead-	
	metal zone of 45° and ignoring friction, determine		
(i)	Basic extrusion pressure	[8]	
(ii)	Extrusion force	[3]	
(iii)	Speed at which the extrusions emerge.	[3]	
Questi	Question 5		
a)	Explain the following detects found in sheet metal products and sugge	est ways	
(*)	they can be corrected or avoided.	[0]	
(1)	Earing	[3]	
(11)	Luders lines	[3]	
(111)	Orange peel	[3]	
b)	Show that in bending, the bend radius ratio K_b is related to the engineering strain		
	e at the ultimate tensile strength by the expression		
	$\frac{nu}{t} = 0.5(e^{-u} - 1)$	[6]	
c)	A metal is yielding plastically under a stress state of $\sigma_x = -40$ MPa, $\sigma_y = 30$	50 MPa,	
	and $\sigma_z = 20$ MPa. Determine the flow stress using		
(i)	Tresca criterion	[2]	
(ii)	von Mises criterion	[3]	
Question 6			
a) What factors necessitate the use of joining processes in manufacturing? [4]			
h)	Demonstrate an understanding of solid state welding by describing in de	tail one	
0)	Demonstrate an understanding of solid state weiging by describing in de		

c)DefinitionGenerating of some state weighing of generating of generating of some state weighing of generating of generati

End of Examination