NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

Faculty of Industrial Technology

Department of Industrial and Manufacturing Engineering

BEng. Degree in Industrial and Manufacturing Engineering

MANUFACTURING PROCESSES II - TIE 3213

2nd Semester Examination

August 2009

Instructions to Candidates

1. Examination length is **3hrs**.

- 2. Each question carries twenty (20) marks and there are six (6) questions in total.
- 3. Attempt the whole of Section A and three questions from Section B.

Section A

Question 1

- What is the difference between deep drawing and wire drawing? a) [4]
- Draw a schematic illustration of a deep drawing operation with a circular punch, b) indicating the die radius, punch diameter, and punch corner radius. [6]
- A cooking pot of 300 mm outside diameter, 200 mm depth, 3 mm wall thickness, c) and 5 mm bottom thickness is to be made from an aluminium alloy by deep drawing. The UTS of the alloy is 190MPa. Determine
- The punch diameter (i) [2] (ii) Starting blank diameter [3]
- The maximum drawing force (iii)
 - [3] Hold-down pressure is a significant parameter in deep drawing operations. d) Explain the likely outcome if
 - Hold-down pressure is zero (i) [1] Hold-down pressure is excessive [1] (ii)

Question 2

Discuss the design aspects that have to be considered in impression die forging. a)

[7]

In preparation of forging a large gear blank, a high carbon steel billet of 200 mm b) diameter and 500 mm height is upset at 1000°C to a 100 mm thick flat disk. A graphite lubricant is used and lowers friction to μ =0.2. Strength coefficient C = 120 MPa and strain rate sensitivity exponent m = 0.13. A hydraulic press with a speed of 4m/min is used. The frictional shear factor is twice the coefficient of friction.

(i)	Make a sketch of the operation.	[3]
(I)	Make a sketch of the operation.	[5]

- (ii) Calculate the average die pressure. [8] [2]
- Determine the forging force. (iii)

Section B

	Section B		
Quest	tion 3		
a)	Describe the roll pass sequence used in rolling of metals.	[6]	
b)	A 100-mm-wide, 2-mm-thick strip is flat rolled to a gauge thickness of 0.7 mm.		
	Measurements reveal that the strip width has increased to 110 mm. Wh		
	strain in the rolling direction?	[6]	
c)	A phosphor bronze strip of $w = 20$ mm and $h = 15$ mm is cold-rolled to 20		
,	original height in a single pass, on a mill with 150 mm diameter rolls		
	0.8 m/s, with a mineral oil lubricant ($\mu = 0.07$). Strength coefficient K is		
	and strain hardening exponent n is 0.46.		
(i)	Calculate the roll force.	[6]	
(ii)	What is the power requirement?	[2]	
(11)		[-]	
Quest	tion 4		
$\frac{\sqrt{acs}}{a}$	Compare the properties of components produced by cold and hot metal ex	trusion	
u)	compare the properties of components produced by cold and not mean ex-	[6]	
b)	Commercial purity aluminium billets of 300 mm diameter are extruded a		
0)	with a ram speed of 0.6m/min, into 150-mm-diameter bars. Assuming		
	metal zone of 45° and ignoring friction, determine	u ucuu	
(i)	Basic extrusion pressure	[8]	
(i) (ii)	Extrusion force	[3]	
(iii)	Speed at which the extrusions emerge.	[3]	
(111)	speed at which the extrasions energe.	[9]	
Quest	tion 5		
a)			
,	they can be corrected or avoided.	5	
(i)	Earing	[3]	
(ii)	Lüders lines	[3]	
(iii)	Orange peel	[3]	
b)	Show that in bending, the bend radius ratio R_b is related to the engineering strain		
,	e at the ultimate tensile strength by the expression	U	
	$\frac{Rb}{Rb} = 0.5(e^{-u} - 1)$	[6]	
-)			
c)	A metal is yielding plastically under a stress state of $\sigma_x = -40$ MPa, $\sigma_y = -40$ MPa, $\sigma_y = -40$ MPa	50 MPa,	
(\cdot)	and $\sigma_z = 20$ MPa. Determine the flow stress using	[0]	
(i)	Tresca criterion	[2]	
(ii)	von Mises criterion	[3]	
Ones	tion <u>6</u>		
a)	What factors necessitate the use of joining processes in manufacturing?	[4]	
•• <i>)</i> 1-)	Demonstrate on un denoten ding of golid state welding by describing in d	L'J	

b) Demonstrate an understanding of solid state welding by describing in detail one solid state welding process. [6]

	20112 20112 A 1121-0 F	L~1
c)	Make a sketch of a weld joint showing the different zones.	[4]
d)	Briefly describe Resistance Spot Welding (RSW).	[6]

End of Examination