NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

Bachelors of Engineering: Honours Degree in Industrial and Manufacturing Engineering Industrial Instrumentation and Control – TIE 3214

2nd SEMESTER SUPPLIMENTARY EXAMINATIONS – OCTOBER 2009

Time allowed: 3 hours

Instructions: Answer FIVE (5) questions. The marks allocated to each question are given in square brackets against the right hand column. Semi-log, normal graph papers and Laplace Tables are provided.

Question 1

Figure Q1 below shows a mass, spring damper system.

Figure Q1 Mass, spring, damper system

a) Show that the system above can be represented by a second order differential equation of the form

$$M\ddot{p}(t) + Bp(t) + Kp(t) = Mg$$
[8]

b) Transform the differential equation by the term p(t) (Mg is a constant) [4]
c) Find the poles of the transform P(s) and then expand P(s) in partial fractions [4]
d) Find the position p(t) and then determine the equation for the velocity v(t) of the mass by differentiating p(t). [4]

Question 2

Using standard block reduction techniques derive the overall transfer function for the system represented by the block diagram in figure Q2 below. [12]

Figure Q2 Block Diagram

b) Given that
$$G_1(s) = \frac{1}{s+2}$$
, $G_2(s) = \frac{3}{s+1}$, $H_1(s) = H_2(s) = 1$. Find $\frac{C(s)}{R(s)}$ [5]

Question 3

The open loop transfer function of a system, G(s), is given as

$$G(s) = \frac{5}{s(0.6s+1)(0.1s+1)}$$

a) Determine

(i) $|G(j\omega)|$

(ii)
$$\operatorname{Arg}G(j\omega)$$
 [4]

b) Give Determine the closed-loop transfer function of the system for the unity feedback. [6]

c) Using the Routh-Hurwitz stability criterion to determine the stability of the system [6]

Question 4

- a) State the Nyquist stability criterion. [3]
- b) Plot the Nyquist diagram for a system with a transfer function

$$G(s) = \frac{5}{(2s+1)(s^2+s+1)}$$
[10]

[3]

[4]

c) From the Nyquist diagram, determine, stating your reasons, if the system is stable. [3]

d) Write a Matlab program to plot the Nyquist plot for the system. [4]

Question 5

A system has an open loop transfer function of

$$G(s) = \frac{1}{s(s+6)(s+4)}$$

- a) Draw the root locus diagram for the system. [8]
- b) For which gain values is the system over damped [4]
- c) What is the gain when there is a damping ration of 0.5 [4]
- d) Write a Matlab program to plot the root locus for the system. [4]

Question 6

A system has an open loop transfer function of

$$G(s) = \frac{1}{s(s+6)(s+4)}$$

e plot for the system. [10]

[1] [1]

a) Draw the Bode plot for the system.

On the	e plot shoe clearly the	e
b)	Gain cross over free	quency
c)	Gain margin	
1		

d) Phase cross over frequency [1] e) Phase margin [1]

e) Write a Matlab program to plot the Bode plot for the system. [4]

Question 7

a)	Given that the input to a system, whose transfer function is $G(s)$, is $u(t)$ and the output	out of
	the system is y(t), show this on a block diagram and define the error e(t)	[4]
b)	Derive the error transfer function E(s) of the system in (a)	[4]
c)	For what type of systems are transfer functions techniques applicable?	[2]
d)	Show using a diagram the difference between open loop and closed loop systems	[2]
e)	What advantages do closed loop systems have over open loop systems	[4]
f)	Explain the concept of critical damping and two areas of application	[4]

End of Exam