	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING INDUSTRIAL INSTRUMENTATION AND CONTROL II	
Main Examination Paper		
April 2015		
	This examination paper consists of 5 pages	

Time Allowed: 3 hours

Total Marks: 100

Special Requirements: Graph paper, Semi-log paper, Laplace Transforms tables

Examiner's Name: Engineer L. Nyanga

INSTRUCTIONS

- 1. Answer any five (5) questions.
- 2. Each question carries 20 marks.
- 3. Use of calculators is permissible.

Page 1 of 5

Question 1

- (a) By means of a clearly labelled diagram, explain the priciple of operation of the Watt centrifugal speed governor.
- (b) Figure Q1 below shows a block diagram. Use block diagram reduction techniques to the

Figure Q 1:Block diagram.

Question 2

- (a) Given that the input to a system whose transfer function is G(s), is u(t) and the output of the system is y(t).
 - (i) Show this on a block diagram. [2]
 - (ii) Derive the error transfer function E(s) of the system in 2 (a) (i) above. [4]
- (b) Find the steady-state errors for inputs of 5u(t), 5tu(t), and 5t²u(t) to the system shown in Figure Q2. The function u(t) is the unit step. [9]

Figure Q2: Feedback control system.

(c) With the aid of a clearly labelled diagram explain a transient error and a steady state error.

Page 2 of 5

[5]

Question 3

Figure Q3 below shows the block diagram of a disk drive read control system.

Figure Q3: Block diagram of disk drive read control system.

Given that $G_1(s) = \frac{5000}{s+1000}$ and $G_2(s) = \frac{1}{s(s+20)}$.

Use the Routh-Hurwitz stability check criteria to find the values of K_a and K_1 that would make the above system stable.

Hint: Ignore the effect of the damping signal $T_d(s)$. [20]

Question 4

- (a) Why do controllers need tuning? [4]
- (b) Explain the Ziegler Nichols method of tuning PID controllers. [6]
- (c) Find the value of the critical damping damping coefficient Cc in terms of K and M for the spring-mass-damper system shown in Figure Q4 below. [10]

Page 3 of 5

Question 5

Figure Q5 shows a closed loop control system.

Figure Q5: Closed loop control system.

(a) Make an accurate plot of the root locus for the system in Figure Q5.		
(b) From	n the root locus plot you came up with in Question 5a find the following:	
(i)	The breakaway and break-in points.	[2]
(ii)	The range of K to keep the system stable.	[3]
(iii)	he value of K that yields a stable system with critically damped second-order poles.	
		[3]
(iv)	The value of K that yields a stable system with a pair of second-order poles that	at have a
	damping ratio of 0.707.	[2]
(c) Write the Matlab code to find the root locus for the system.		

Question 6

Figure Q6 shows a block diagram of a control system.

Figure Q6: Control system block diagram.

(a) Using the Nyquist criterion, find the range of K for stability for each of the systems. [10]

Page 4 of 5

Copyright: National University of Science and Technology, 2015

(b) Write a program in MATLAB that will do the following:-

- (i) Allow a value of gain, K, to be entered from the keyboard. [5]
- (ii) Display the Bode plots of a system for the entered value of K. [5]

Question 7

An antenna shown in Figure Q7 has an open loop transfer function.

$$\frac{6.63K}{s(s+1.71)(s+100)}$$

Use frequency response techniques to find the following:-

(a) The range of preamplifier gain, K, required for stability.	[8]
--	-----

(b) Percent overshoot if the preamplifier gain is set to 30. [3]

[3]

[3]

[3]

- (c) The estimated settling time.
- (d) The estimated peak time.
- (e) The estimated rise time.

Figure Q7: Antenna.

End of examination paper.

