NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY
 DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

Bachelor of Engineering Honours Degree Industrial and Manufacturing Engineering
$\underline{\text { 2 }^{\text {nd }} \text { Semester Main Examination }}$

COURSE : Concurrent Engineering II
CODE : TIE 3219
DATE : April/May 2014
DURATION : 3 Hours

INSTRUCTIONS AND INFORMATION FOR THE CANDIDATE

1. Answer any five (5) questions.
2. All questions carry $\mathbf{2 0}$ marks each.
3. This paper contains seven (7) questions.
4. There are seven (7) printed pages.

Question 1

An experiment identifies three controllable factors for heat treatment of mild steel. Each factor can be applied at two levels as shown in Table Q1. Four trials were done (two tests for each condition) and the quality characteristic, Y1was found to be $50,45,40$, and 55 respectively and Y2 to be $55,50,40$ and 50 respectively. Note higher values of Y are more favourable.

Table Q1 - Factors

Factor	Level 1	Level 2
A: Holding time in furnace	6 hours	5 hours
B: Holding Temperature	$700^{\circ} \mathrm{C}$	$800^{\circ} \mathrm{C}$
C: Cooling time	1 hour	2 hours

Apply Taguchi methods to determine the following:
(i) Determine the Taguchi experimental design orthogonal array for the process. Use the conditions provided in the table above to fill in the array.
(ii) Factor averages.
(iii) The S / N ratios.
(iv) Factorial effects for the S / N ratios.
(v) Optimum condition
(vi) The result at the optimum condition

Question 2

(a) Define, making use of appropriate equations, Value Engineering.
(b) There are four types of value considered in Value Engineering. Distinguish these four types of value.
(c) Outline the steps involved in value analysis.

Question 3

(a) By use of an appropriate diagram, illustrate and explain how the three major types of assembly methods differ by type and production volume.
(b) A product is made from 25 parts and is to be manufactured in five (5) different styles obtained by having one alternative for each of the five parts in the assembly. Ten major design changes will probably take place during the first five (5) years of the product life. The expected annual production volume is 1500000 units - 500000 units per shift. As a
company policy, the amount to be spent on an item of automation equipment that will do the work of one operator per shift is $\$ 50000$ and the annual cost of one assembly operator is estimated to be $\$ 10000$ (including overheads). Use this information and Table Q3 in the Appendix to select the appropriate assembly method for this product.

Question 4

(a) The Lucas DFA method is one of the three major assembly evaluation method (AEM) used. Using an appropriate diagram illustrate the Lucas Assembly-sequence flowchart diagram.
(b) Use the Lucas DFA method on Figure Q4 to determine the:
i. Design Efficiency,
ii. Feeding Ratio,
iii. Fitting Ratio.

Fig Q4

Question 5

(a) What does the acronym "DFX" stand for? State six (6) different techniques that the " X " can stand for.
(b) Choose any four Xs that you specified above and explain, highlighting the design guidelines, how they are used.

Question 6

(a) Explain the robust design problem.
(b) Use an example to illustrate the robust design problem.
(c) Using Taguchi quality control method, explain the various stages of quality control that can deliver a robust product.

Question 7

(a) On a FAST (Function Analysis Systematic Technique) diagram, use appropriate illustrations to explain what you understand by the following terms:
i) High order function.
ii) Low order function.
(b) Develop a detailed fast diagram for a product of your choice.

End of Exam

Appendix Q1

Array Selector

		Number of Parameters (P)																													
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
\cdots	2	L4	L4	18	18	L8	L8	L12	L12	L12	L12	L16	L16	L16	L16	L32															
$\stackrel{\square}{4}$	3	19	L9	19	L18	118	L18	L18	L27	L27	L27	L27	L27	L36																	
吕	4	L'16	L'16	L'16	L'16	L'32	L'32	L'32	L'32	L'32																					
2		L25	L25	L25	L25	L25	L50	L50	L50	L50	L50	L50																			

$\underline{\text { L4 Array }}$

Experiment	$\mathbf{P 1}$	$\mathbf{P} 2$	$\mathbf{P 3}$	$\mathbf{P 4}$	$\mathbf{P 5}$	$\mathbf{P 6}$	$\mathbf{P 7}$
1	1	1	1	1	1	1	1
2	1	1	1	2	2	2	2
3	1	2	2	1	1	2	2
4	1	2	2	2	2	1	1
5	2	1	2	1	2	1	2
6	2	1	2	2	1	2	1
7	2	2	1	1	2	2	1
8	2	2	1	2	1	1	2

L9 Array

Experiment	P1	P2	P3	P4
$\mathbf{1}$	1	1	1	1
$\mathbf{2}$	1	2	2	2
3	1	3	3	3
4	2	1	2	3
5	2	2	3	1
6	2	3	1	2
7	3	1	3	2
8	3	2	1	3
$\mathbf{9}$	3	3	2	1

L12 Array

L18 Array

L25 Array

Experiment	P1	P2	P3	P4	P5	P6
1	1	1	1	1	1	1
2	1	2	2	2	2	2
3	1	3	3	3	3	3
4	1	4	4	4	4	4
5	1	5	5	5	5	5
6	2	1	2	3	4	5
7	2	2	3	4	5	1
8	2	3	4	5	1	2
9	2	4	5	1	2	3
10	2	5	1	2	3	4
11	3	1	3	5	2	4
12	3	2	4	1	3	5
13	3	3	5	2	4	1
14	3	4	1	3	5	2
15	3	5	2	4	1	3
16	4	1	4	2	5	3
17	4	2	5	3	1	4
18	4	3	1	4	2	5
19	4	4	2	5	3	1
20	4	5	3	1	4	2
21	5	1	5	4	3	2
22	5	2	1	5	4	3
23	5	3	2	1	5	4
24	5	4	3	2	1	5
25	5	5	4	3	2	1

Appendix Q3

CLASSIFICATION SYSTEM FOR PRODUCTS AND ASSEMBLIES

Appendix Q4

Lucas DFA method - Manual Handling Analysis			
Handling Index $=A+B+C+D$			
A. Size \& Weight of One of the following	Part	B. Handling Al/ that apply	difficulties
Very small - requires tools	1.5	Delicate	0.4
Convenient - hands only	1	Flexible	0.6
Large and/or heavy requires more than 1 hand	1.5	Sticky	0.5
Large and/or heavy requires hoist or 2 people	3	Tangible	0.8
		Severely nest	0.7
		Sharp/Abrasive	0.3
		Untouchable	0.5
		Gripping problem / slippery	0.2
		No handling difficulties	0
C. Orientation of One of the following:	Part	D. Rotational Orientation of Part One of the following	
Symmetrical, no orientation req'd	0	Rotational Symmetry	0
End to end, easy to see	0.1	Rotational Orientation, easy to see	0.2
End to end, not visible	0.5	Rotational Orientation, hard to see	0.4

Lucas DFA method - Manual Fitting Analysis

Fitting Index $=A+B+C+D+E+F$

A. Part Placing and Fastening One of the following	B. One of the following	Direction	
Self-holding orientation	1.0	Straight line from above	0
Requires holding Plus 1 of the following	2.0	Straight line not from above	0.1
Self-securing (i.e. snaps)	1.3	Not a straight line	1.6
Screwing	4.0		
Riveting	4.0		
Bending	4.0		
C. Insertion One of the following		D. Access and/or Vision One of the following	
Single	0	Direct	1.5
Multiple insertions	0.7	Restricted	Force
Simultaneous multiple insertions	1.2		0
E. Alignment One of the following		F. One of the following	0.6
Easy to align	0	No resistance to insertion	Resistance to insertion

