NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

Bachelor of Engineering Honours Degree Industrial and Manufacturing Engineering

2nd Semester Main Examination

- COURSE : Concurrent Engineering II
- **CODE** : **TIE 3219**
- DATE : April/May 2014
- DURATION : 3 Hours

INSTRUCTIONS AND INFORMATION FOR THE CANDIDATE

- 1. Answer any five (5) questions.
- 2. All questions carry <u>20 marks</u> each.
- 3. This paper contains seven (7) questions.
- 4. There are seven (7) printed pages.

Question 1

An experiment identifies three controllable factors for heat treatment of mild steel. Each factor can be applied at two levels as shown in Table Q1. Four trials were done (two tests for each condition) and the quality characteristic, Y1was found to be 50, 45, 40, and 55 respectively and Y2 to be 55,50, 40 and 50 respectively. Note higher values of Y are more favourable.

Table Q1 – Factors		
Factor	Level 1	Level 2
A: Holding time in furnace	6 hours	5 hours
B: Holding Temperature	$700^{\circ}C$	800^{0} C
C: Cooling time	1 hour	2 hours

Apply Taguchi methods to determine the following:

(i)	Determine the Taguchi experimental design orthogonal array for the process. conditions provided in the table above to fill in the array.	Use the [2]
(ii)	Factor averages.	[3]
(iii)	The S/N ratios.	[6
(iv)	Factorial effects for the S/N ratios.	[6]
(v)	Optimum condition	[1]
(vi)	The result at the optimum condition	[2]

Question 2

(a)	Define, making use of appropriate equations, Value Engineering.	[2]
(b)	There are four types of value considered in Value Engineering. Distinguish these four	types
	of value. [12]	
(c)	Outline the steps involved in value analysis.	[6]

Question 3

(a) By use of an appropriate diagram, illustrate and explain how the three major	types of
assembly methods differ by type and production volume.	[6]

(b) A product is made from 25 parts and is to be manufactured in five (5) different styles obtained by having one alternative for each of the five parts in the assembly. Ten major design changes will probably take place during the first five (5) years of the product life. The expected annual production volume is 1 500 000 units – 500 000 units per shift. As a

company policy, the amount to be spent on an item of automation equipment that will do the work of one operator per shift is \$50000 and the annual cost of one assembly operator is estimated to be \$10000 (including overheads). Use this information and Table Q3 in the Appendix to select the appropriate assembly method for this product. [14]

Question 4

- (a) The Lucas DFA method is one of the three major assembly evaluation method (AEM) used. Using an appropriate diagram illustrate the Lucas Assembly-sequence flowchart diagram.
- (b) Use the Lucas DFA method on Figure Q4 to determine the:
 - i. Design Efficiency,
 - ii. Feeding Ratio,
 - iii. Fitting Ratio.

Fig Q4

[3]

[6]

[6]

Question 5

(a) What does the acronym " DFX " stand for? State six (6) different techniques that the	X can
stand for. [8]	
(b) Choose any four Xs that you specified above and explain, highlighting the design guid	delines,
how they are used. [12]	

Question 6

(a)	Explain the robust design problem.	[5]
(b)	Use an example to illustrate the robust design problem.	[5]
(c)	Using Taguchi quality control method, explain the various stages of quality control	ol that can
	deliver a robust product. [10]]

Question 7

(a)	a) On a FAST (Function Analysis Systematic Technique) diagram	m, use appropriate illustrations
	to explain what you understand by the following terms:	

i) High order function.	[3]
ii) Low order function.	[3]
(b) Develop a detailed fast diagram for a product of your choice.	[14]

End of Exam

Appendix Q1

Array Selector

	C														Numb	er of Pa	aramet	ers (P)													
		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
els	2	L4	L4	L8	L8	L8	L8	L12	L12	L12	L12	L16	L16	L16	L16	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32	L32
of Lev	3	L9	L9	L9	L18	L18	L18	L18	L27	L27	L27	L27	L27	L36	L36	L36	L36	L36	L36	L36	L36	L36	L36								
nber	4 L	L'16	L'16	L'16	L'16	L'32	L'32	L'32	L'32	L'32																					
N	5 I	L25	L25	L25	L25	L25	L50	L50	L50	L50	L50	L50																			

L4 Array

L8 Array

				Experiment	P1	P2	P3	P4	P5	P6	P7
				1	1	1	1	1	1	1	1
				2	1	1	1	2	2	2	2
				3	1	2	2	1	1	2	2
Experiment	P1	P2	P3	4	1	2	2	2	2	1	1
1	1	1	1	5	2	1	2	1	2	1	2
2	1	2	2	6	2	1	2	2	1	2	1
3	2	1	2	7	2	2	1	1	2	2	1
4	2	2	1	8	2	2	1	2	1	1	2

L9 Array

Experiment	P1	P2	P3	P4
1	1	1	1	1
2	1	2	2	2
3	1	3	3	3
4	2	1	2	3
5	2	2	3	1
6	2	3	1	2
7	3	1	3	2
8	3	2	1	3
9	3	3	2	1

L12 Array

Experiment	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	
1	1	1	1	1	1	1	1	1	1	1	1	
2	1	1	1	1	1	2	2	2	2	2	2	
3	1	1	2	2	2	1	1	1	2	2	2	
4	1	2	1	2	2	1	2	2	1	1	2	
5	1	2	2	1	2	2	1	2	1	2	1	
6	1	2	2	1	2	2	1	2	1	2	1	
7	1	2	2	2	1	2	2	1	2	1	1	
8	2	1	2	1	2	2	2	1	1	1	2	
9	2	1	1	2	2	2	1	2	2	1	1	
10	2	2	2	1	1	1	1	2	2	1	2	
11	2	2	1	2	1	2	1	1	1	2	2	
12	2	2	1	1	2	1	2	1	2	2	1	

L16 Array

Europinsont	D4	D 2	D2	D/	DC	DC.	07	80	00	D40	D44	D42	D42	D44	D46
Experiment	1	P2	P3	P4	45	16	14	18	19	P10	P11	P12	P13	P14	P15
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2
3	1	1	1	2	2	2	2	1	1	1	1	2	2	2	2
4	1	1	1	2	2	2	2	2	2	2	2	1	1	1	1
5	1	2	2	1	1	2	2	1	1	2	2	1	1	2	2
6	1	2	2	1	1	2	2	2	2	1	1	2	2	1	1
7	1	2	2	1	1	2	2	2	2	1	1	2	2	1	1
8	1	2	2	2	2	1	1	2	2	1	1	1	1	2	2
9	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
10	2	1	2	1	2	1	2	2	1	2	1	2	1	2	1
11	2	1	2	2	1	2	1	1	2	1	2	2	1	2	1
12	2	1	2	2	1	2	1	2	1	2	1	1	2	1	2
13	2	2	1	1	2	2	1	1	2	2	1	1	2	2	1
14	2	2	1	1	2	2	1	2	1	1	2	2	1	1	2
15	2	2	1	2	1	1	2	1	2	2	1	2	1	1	2
16	2	2	1	2	1	1	2	2	1	1	2	1	2	2	1

L18 Array

Experiment	P1	P2	P3	P4	P5	P6	P7	P8
1	1	1	1	1	1	1	1	1
2	1	1	2	2	2	2	2	2
3	1	1	3	3	3	3	3	3
- 4	1	2	1	1	2	2	3	3
5	1	2	2	2	3	3	1	1
6	1	2	3	3	1	1	2	2
7	1	3	1	2	1	3	2	3
8	1	3	2	3	2	1	3	1
9	1	3	3	1	3	2	1	2
10	2	1	1	3	3	2	2	1
11	2	1	2	1	1	3	3	2
12	2	1	3	2	2	1	1	3
13	2	2	1	2	3	1	3	2
14	2	2	2	3	1	2	1	3
15	2	2	3	1	2	3	2	1
16	2	3	1	3	2	3	1	2
17	2	3	2	1	3	1	2	3
18	2	3	3	2	1	2	3	1

L25 Array

Experiment	P1	P2	P3	P4	P5	P6
1	1	1	1	1	1	1
2	1	2	2	2	2	2
3	1	3	3	3	3	3
4	1	4	4	4	4	4
5	1	5	5	5	5	5
6	2	1	2	3	4	5
7	2	2	3	4	5	1
8	2	3	4	5	1	2
9	2	4	5	1	2	3
10	2	5	1	2	3	4
11	3	1	3	5	2	4
12	3	2	4	1	3	5
13	3	3	5	2	4	1
14	3	4	1	3	5	2
15	3	5	2	4	1	3
16	4	1	4	2	5	3
17	4	2	5	3	1	4
18	4	3	1	4	2	5
19	4	4	2	5	3	1
20	4	5	3	1	4	2
21	5	1	5	4	3	2
22	5	2	1	5	4	3
23	5	3	2	1	5	4
24	5	4	3	2	1	5
25	5	5	4	3	2	1

Appendix Q3

· · · ·	²⁺ CLAS	SIFICAT	ПO	N SYS	TEM	FOR P	RODU	CTS A	ND AS	SEMBI	LIES		
	single product has a market life of 3 years or more without signifi- cant fluctuations in demand, the manual fitting or adaption of parts is not required and the parts are of sufficiently high quality (See notes 1 and 2 on the reverse side)											ducts, no ind ged (6)	, law nd or (6)
investment in automation encouraged investment in au SQ/W ≥ 3 SC (3)								in autom SQ/W	ation disc < 3	t similar pro- uality parts a tion encoura;	anual fitting ions in dema ed		
few product styles several p $\gamma \leq 1.5$ γ (4)				duct styl 1.5	es (4)	few product styles Y ≤ 1.5 (4)			several	product Y > 1.5	different bu tting, high qu it in automai	products, m irts, fluctuat on discourage	
few design changes n _d ≤ 0.5 (5)	$ \begin{array}{c c} \mbox{few design} & \mbox{several} \\ \mbox{few design} & \mbox{design} \\ \mbox{changes} & \mbox{changes} \\ \mbox{n_d} \leq 0.5 \\ \mbox{(5)} \end{array} , \begin{array}{c} \mbox{few design} \\ \mbox{changes} \\ \mbox{n_d} > 0.5 \\ \mbox{(5)} \end{array} , \begin{array}{c} \mbox{few design} \\ \mbox{few design} \\ \mbox{changes} \\ \mbox{n_d} \leq 0.5 \\ \mbox{(5)} \end{array} , $			several design changes n _d > 0.5 5) (5)		few design changes $n_d \leq 0.5$ (5) $reveraldesignchangesn_d > 0.5$			$ \begin{array}{c c} few \ design \\ changes \\ n_d \ \leq \ 0.5 \\ 0 \ (5) \end{array} \begin{array}{c} several \\ design \\ changes \\ n_d \ > \ 0.5 \\ (5) \end{array} $			variety of manual fil investmen	variety of quality pa automatio
			· · · · ·	0	1	2	3	4	5	6	7	8	9
annual production volume per shift greater than 0.7	7 or mo in the a n ≩	ore parts ssembly ≥ 7	0	AF	AF	АР	АР	AF	AF	АР	АР	АР	MA
million assemblies V _{as} > 0.7	less than 7 parts in the assembly n < 7		1	AI	Al	Al	Al	AI	AI	AI MM	MM Al	AP	MA
	25 or more parts in the assembly $n \ge 25$		2	AF	AP	AP	АР	AF AP	AP	AP	AP.	АР	MA
annual production	15 or more parts in the assembly 15 ≤ n < 25		3	AF AP	AP AF	AP	АР	AF MM	AP MM	AP MM	AP MM	AP	МА
volume per shift greater than 0.5 million assemblies $0.5 < V_{ex} \le 0.7$	10 or parts asser 10 ≤ r	more in the nbly n < 15	4	Al	AI	AI	AP Al	Al	Al	MM Al	MM AP	ĄР	MA.
a	7 or r parts i assen 7 ≤ n	nore in the nbly < 10	5	AI	AI	AI	AI AP	AI	MM Al	мм	мм	ар ММ	МА
	less than 7 parts in the assembly n < 7		6	AI	Al	AI	AI MM	AI	MM Al	мм	ММ	MM AR	MA
annual production volume per shift greater than 0.1 million assemblies $0.1 < V_{as} \le 0.5$	10 or parts i asser n ≥	more in the πbly 10	7	AI AP	AP	AP	АР	MM Al	AP MM	АР ММ	AP	AP	MA
	less th parts i assen n <	an 10 n the nbly 10	8	мм	мм	мм	мм	ММ	мм	MM	MM MA	AR MA	МА
annual production volume per shift less than or equal to 0.1 million assemblies $V_{as} \leq 0.1$			9	мм	MM MA	MM MA	МА	MM MA	MA	MA	MA	MA	МА

Appendix Q4

Lucas DFA method - Manual Handling Analysis									
Handling Index = $A+B+C+D$									
A. Size & Weight of	Part	B. Handling d	ifficulties						
One of the following		All that apply							
Very small - requires tools	1.5	Delicate	0.4						
Convenient - hands only	1	Flexible	0.6						
Large and/or heavy	1.5	Sticky	0.5						
requires more than 1 hand									
Large and/or heavy	3	Tangible	0.8						
requires hoist or 2 people									
		Severely nest	0.7						
		Sharp/Abrasive	0.3						
		Untouchable 0.5							
		Gripping problem / slippery 0.2							
		No handling difficulties	0						
C. Orientation of	Part	D. Rotational Orientatio	n of Part						
One of the following:		One of the following							
Symmetrical, no orientation req'd	0	Rotational Symmetry	0						
End to end, easy to see	0.1	Rotational Orientation, easy 0							
		to see							
End to end, not visible	0.5	Rotational Orientation, hard	0.4						
		to see							

Lucas DFA method - Manual Fitting Analysis									
Fitting Index = $A+B+C+D+E+F$									
A. Part Placing and Faster	ning	B. Process	Direction						
One of the following	One of the following								
Self-holding orientation	1.0	Straight line from above	0						
Requires holding	2.0	Straight line not from							
Plus 1 of the following		above							
Self-securing (i.e. snaps)	1.3	Not a straight line	1.6						
Screwing	4.0								
Riveting	4.0								
Bending	4.0								
C. Insertion		D. Access and/or Vision							
One of the following		One of the following							
Single	0	Direct	0						
Multiple insertions	0.7	Restricted	1.5						
Simultaneous multiple insertions	1.2								
E. Alignment	F. Insertion Fore								
One of the following	One of the following								
Easy to align	0	No resistance to insertion							
Difficult to align	0.7	Resistance to insertion	0.6						