National University of Science and Technology

Faculty of Industrial Technology

Department of Industrial and Manufacturing Engineering

Bachelor in Engineering Industrial and Manufacturing Engineering

Manufacturing Engineering Design TIE 3220

Second Semester Examinations July 2009

Duration: 3 hours

Answer: FIVE (5) Questions in all. ANY THREE from SECTION A and all in SECTION B Section A

Question 1

- a) Explain briefly four properties expected on tooling and the elements that impart such properties. [8]
- b) Briefly explain compression molding and injection molding. [8]
- c) How do the two types of plastics differ and give one example of each type? [4]

Question 2

a) Briefly explain the following terms with the aid of diagrams.

- i) The direction of mold closure
- ii) External undercut
- b) In an effort to become more competitive a large automotive company has decided to expand its design for manufacturing group. Assume that you have applied for a position with that group. As part of the interview process you have been shown the proposed design of an injection molded part similar to the part shown in Figure 2.1. What suggestions would you make in order to reduce the cost to mold the part? [8]

[2]

[2]

Figure 2.1: Proposed injection mold designs

c) Briefly explain three Design for Manufacture (DFM) guideline that you would keep in mind during plastic injection mould design. [6]

Question 3

- a) What comments would you make concerning the tooling costs for the part shown in Fig 3.1. (What suggestions in words would you make to reduce tooling cost?). [4]
- b) Before you convince your MD that your suggested redesign of the part shown in Fig 3.1 will yield significant savings in tool cost, calculate the current tool costs assuming L= 70 mm,

B=H=50 mm, the part has a textured surface finish and that tight tolerance are to be used.

[16]

Figure 3.1:

Question 4

For the file paper clamp shown in Figure Q4.1;

i)	Apply Strip development process.	[5]
ii)	Create a strip layout	[5]
iii)	Sketch the progressive die set (punches and corresponding dies.	[10]

Figure Q4.1: File paper clamp

Question 5

- a) Briefly explain four aspects in the design for manufacturing guidelines for stamped parts. [8]
- b) For a production volume of 50 000 parts determine the relative processing costs for part shown in Fig 6.1. Assume that the part is made of soft cold rolled steel. [12]

Question 6

SECTION B

a) The part shown in Fig 6.1 is made of a soft cold rolled steel.. First suggest a redesign

then determine:

- i) The relative die construction cost for the part.
- ii) The relative die material cost for the part.
- iii) The overall die cost for the part.

Fig 6.1: Stamping Part Z (All dimensions are in mm)

Question 7

a) Imagine that you are part of the INDMFG team and you have been asked to roughly estimate the cycle time for the part shown in Fig 7.1. If it is to be produced with tight tolerances, what would you estimate the cycle time to be if the part is made of nylon 6 in a mold with a texture finish, given that the maximum wall thickness of the part id 2.5mm and the minimum wall thickness of the part is 1.5mm.

[8]

[8]

[4]

[15]

b) In an effort to reduce processing costs, what redesign suggestions would you make for the part shown in Fig 7.1 so that the cycle time of the part is reduced? [5]

			1 in = 25.4 mm; 100 mm/25.4 mm = 3.94 in										SE	CON	D DI	GIT			1000
		at rts 7					L <	250	mm (4)	250m	m <	L < I	+8 0mm	L	> 48	0 mm			
	BASIC COMPLEXITY			Number of External Undercuts (5)		Number of External Undercuts (5)			5)	Number of External Undercuts (5)									
Bo		haped				zero	one	two	More than two			two	More than two	zero	one	More than one			
			Parts whose peripheral height from a planar dividing surface	Part in one half(3)	0	0	1	17	3 1.52 2.16	4	1	6	7	/	/	2.33			
F	Parts Without Internal Undercuts	ernal ercuts	is constant (2)	Part not in one half(3)	1	1.14	1.37	1.52		1.61	1.84	1.99	2.13	2.09	2.32	2.58			
RS	(1)	Parts whose peripheral height from a Dividing Surface is not constant - parts with a non-planar Dividing Sur	planar	2	1.28	1.51	1.66	2.44	1.81	2.04	2.19	3.51	2.34	2.58	2.89			
	I Pt	On Only One Face	Parts whose ONLY Dividing Surface (planar, or parts whose peripheral h from a planar dividing surface is co	aiaht	3	2.35	2.50	2.14	2.86	2.75	2.98	3.13	3.27	3.17/	3.49	3.66			
lisn Id Ive Iir	r t U s n	of the Part	Parts whose peripheral height from a Dividing Surface is not constant - parts with a non-planar Dividing Sur	OT -	4	2.98	3.24	3.36	3.50	3.52	3.75	3.89	4.09	4.04	4.28	4.54			
	₩e ir tc	On More Than One	Parts whose ONLY Dividing Surface (planar, or parts whose peripheral h from a planar dividing surface is co	aight	5	4.29	4.43	4.58	4.72	4.62	4.85	4.99	5.14	5.03	5.27	5.53			
	h u t (1)		Parts whose peripheral height from a Dividing Surface is not constant - parts with a non-planar Dividing Sur	OF -	6	5.37	5.60	5.14	/	5.90	6.13	6.28	6.42 8.27	8.01 6.43	8.24 6.67 9.60	6.93			

FIGURE 4.19 Determination of cavity detail. (The numbers in parentheses refer to notes found in Appendix 4.A.)

FIGURE 4.23 Value of C for use in Equation 4.6. (If $L_m/H_m < I$, then use the value of H_m/L_m to determine C.)

FIGURE 4.24 Relative die material cost.

Table 4.1 Subsidiary complexity rating, C_s . (The numbers in parentheses refer to notes found in Appendix 4.A.)

			(4)	Fourth	h Digit
				Without Extensive (7) External Undercuts (5)	With Extensive (7) External Undercuts (5)
				0	1
Third	Cavity	Low	0	1.00	1.25
Digit	Detail (6)	Moderate	1	1.25	1.45
		High	2	1.60	1.75
		Very High	• 3	2.05	2.15

Table 4.2 Tolerance and surface finish rating, C_t . (The numbers in parentheses refer to notes found in Appendix 4.A.)

				Sixth	Digit
				Commercial Tolerance, T _a	Tight Tolerance, T ₃
				0	1
Fifth	Surface	SPI 56	0		_
Digit	Finish, R _a	SPI 3-4	1	1.00	1.05
		Texture	2	1.05	1.10
		SPI 1-2	3	1.10	1.15

Worksheet for Relative Tooling Costs—Injection Molding

Original Design

Relative Die Construction Cost

Basic Shape	L =	B =	H =	Box/Flat
Basic Complexity	1 st Digit =	2 nd Digit =	C _b =	
Sub. Complexity	3rd Digit =	4 th Digit =	C.=	
T _a /R _a	5 th Digit =	6 th Digit =	C _t =	

Total relative die construction cost C_{dc}

 $= C_b C_s C_t =$

.

Relative Die Material Cost

L _m =	B _m =	H _m =
Die closure parallel to	L _m /H _m =	Thus, C =
$M_{ws} = [0.006 C H_m^4]^{1/3} =$		
$M_{wf} = 0.04 L_m^{4/3} =$		
$M_a = (2M_{ws} + L_m)(2M_{ws} + L_m)$	B _m) =	
$M_t = (H_m + 2M_{wf}) =$		
Thus,		

 $C_{dm} =$

 $C_{d} = 0.8C_{dc} + 0.2C_{dm} =$

Redesign Suggestions

% Savings =				
$C_{d} = 0.8C_{dc} + 0.2C_{dm} =$				
Total relative die cons	struction cost C _{de}	$= C_b C_s C_t =$		
T _a /R _a	5 th Digit =	6 th Digit =	C _t =	
Sub. Complexity	3 rd Digit =	4 th Digit =	C,=	
Basic Complexity	1 st Digit =	2 nd Digit =	C _b =	
Basic Shape	L =	B =	H =	Box/Flat

Appendix for Stamping Parts

Table 9.7 Determination of the number of stations	Table 9.1 Algorithm for determination of the total numb of active stations for shearing and local features (Chandrasekaran, S., 1993).				
required (Mahajan, P.V., 1991). The subscripts 1 and 2 refer to the number of stations required for shearing and local	Features	Number of Station			
forming, and bending and side-action features, respectively.	External pilot holes	1			
Number of Active Stations: $N_a = N_{a1} + N_{a2} =$	Number of distinct feature types, n _t	0123456789			
Number of Idle Stations: $N_i = N_{i1} + N_{i2} =$	Number of closely spaced feature types, n _{fc}	0123456789			
$N_{ij} = 1.5(N_{aj} - 1), j = 1, 2$	Number of feature types with features in opposite direction, n_{op}	0123456789			
b) For $25 \text{ mm} < L_{ub} < 125 \text{ mm}$	Tabs? (y/n)	2/0			
$N_{i1} = 0$ (parts without curls) $N_{i1} = 2$ (parts with curls)	Embosses near part periphery? (y/n)	1/0			
$N_{12} = (N_{a2} - 1)$	Curls or hems? (y/n)	2/0			
c) For $L_{ub} \ge 125 \text{ mm}, N_{i1} = N_{i2} = 0$	Blanking out station	1			
Fotal Number of Stations: $N_s = N_a + N_i =$	Total number of active stations, N_{al}				

Table 9.3Basic hours required to produce various featuresusing a medium-grade tool. For a high-grade tool add 10hours. For a low-grade tool, subtract 10 hours. (Note: Databased on information provided by collaborating stampers.)

		Operation	Medium Grade
		Bending	40
		Blanking	40
		Piercing	30
		Standard Hole	30
		Nonstandard Hole	45
Table 9.2 Algorithm for determination	-falses 1	Extruded Hole	50
able 9.2 Algorithm for determination	of the total number	Lancing	40
f active stations for wipe forming and s	ide-action features	Notching	40
Chandrasekaran, S., 1993).		Embossing	40
		Lettering Semi-perf	40
Vipe Forming	Number of Stations	Tab	25 65
	rumber of stations	(notch)	(40)
lumber of bend stages 0 1 2 3 4 5	023456	(form)	(25)
ends in opposite directions? (applies		Drawing	55
nly to parts with one hand at	1/0	Forming	40
nly to parts with one bend stage)		Coining	40
/n)		Curl	120
lumber of overbends	012345	(notch)	(40)
		(bend)	(40)
umber of features in the primary	012345	(form)	(40)
		Hem	120
ate near the bend line			
	010245	(notch)	(40)
ate near the bend line umber of side-action features otal Number of Active Stations, N _{a2}	012345	(bend) (form)	(40) (40) (40)

Table 9.6 Factors to account for the effects of sheet thickness on die construction and die material costs.					
Sheet thickness (mm)	F_i	F_{dm}			
0.125-3.00	1.0	1.0			
<0.125	1.7	1.0			
>3	1.0	1.4			

Worksheet for Relative Tooling Costs-Stamping

Original Design

8		
2	Yes	No
Unfoldable?		
Uniform sheet thickness?		
Sheet thickness < 6.5 mm?		
Hole diameter > sheet thickness?		
Features normal to sheet thickness?		
Are bends straight bends?		
Without multiple plate junctions?		
Primary plate without overbends on all sides?		
IF ALL RESPONSES ARE YES—PART IS STAMPABLE!		

Number of Active Stations

N_{a1} (see Table 9.1) =	N_{a2} (see Table 9.2) =	
$N_a = N_{a1} + N_{a2} =$		

Relative Die Construction Cost

t_b (see Table 9.3) =	$t_d = 18.33N_a - 3.33 =$		
$t_{dc} = t_b + t_d =$	$C_{dc} = t_{dc}/138 =$		
F_t (see Table 9.6) =	$C_{dc} = C'_{dc}F_t =$		

Relative Die Material Cost

Flat Envelope:	$L_{ul} =$		$L_{uw} =$
Direction of strip feed:	L _{ub} =		L _{ubn} =
Idle Stations	N_{i1} (see Table 9.7) =		N_{i2} (see Table 9.7) =
Total Stations	$N_s = N_a + N_{i1} + N_{i2} =$		F_{dm} (see Table 9.6) =
$L_{dl} = N_s L_{ub} + 2L_{ex} =$		$L_{db} = L_{ubn} + 2L_{ex} =$	
$A = L_{dl} + 25 =$		$B = L_{db} + 25 =$	
$S_{ds} = AB =$			
$C_{dm} = F_{dm} [2.7S_{ds}/(25.4)^2 + 1]$	136]/260.2 =		
$C_d = 0.2C_{dm} + 0.8C_{dc} =$			