National University of Science and Technology

Faculty of Industrial Technology

Department of Industrial and Manufacturing Engineering

Bachelor in Engineering Industrial and Manufacturing Engineering

Manufacturing Engineering Design TIE 3220

Second Semester Examinations August 2009

Duration: 3 hours

Answer: FIVE (5) Questions in all. ANY THREE from SECTION A and all in SECTION B

SECTION A

QUESTION 1

- a) Explain briefly four properties expected on tooling and the elements that impart such properties.
 - [8]

[2]

- b) Briefly explain compression molding and injection molding. [8]
- c) How do the two types of plastics differ and give one example of each type? [4]

QUESTION 2

- a) Briefly explain the following terms with the aid of diagrams.
 - i) The direction of mold closure
 - ii) External undercut [2]
- b) In an effort to become more competitive a large automotive company has decided to expand its design for manufacturing group. Assume that you have applied for a position with that group. As part of the interview process you have been shown the proposed design of an injection molded part similar to the part shown in Figure 2.1. What suggestions would you make in order to reduce the cost to mold the part?

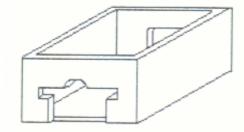


Figure 2.1: Proposed injection mold designs

c) Briefly explain three Design for Manufacture (DFM) guideline that you would keep in mind during plastic injection mould design. [6]

QUESTION 3

- a) What comments would you make concerning the tooling costs for the part shown in Fig 3.1. (What suggestions in words would you make to reduce tooling cost?). [4]
- b) Before you convince your MD that your suggested redesign of the part shown in Fig 3.1 will yield significant savings in tool cost, calculate the current tool costs assuming L= 70 mm, B=H=50 mm, the part has a textured surface finish and that tight tolerance are to be used.

[16]

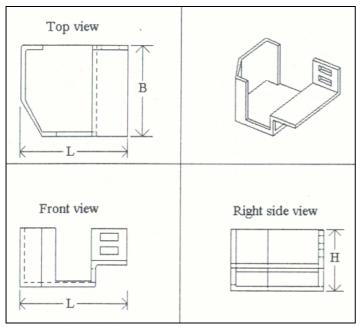


Figure 3.1:

QUESTION 4

For the file paper clamp shown in Figure Q4.1;

- i) Apply Strip development process.
 ii) Create a strip layout
 iii) Shotch the progressive die set (synches and someone dies dies.
- iii) Sketch the progressive die set (punches and corresponding dies. [10]

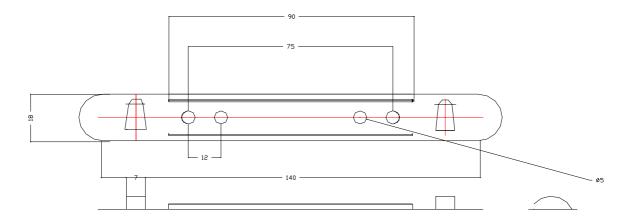


Figure Q4.1: File paper clamp

QUESTION 5

- a) Briefly explain four aspects in the design for manufacturing guidelines for stamped parts. [8]
- b) For a production volume of 50 000 parts determine the relative processing costs for part shown in Fig 4.1. Assume that the part is made of soft cold rolled steel. [12]

SECTION B

QUESTION 6

- a) The part shown in Fig 4.1 is made of a soft cold rolled steel.. First suggest a redesign then determine:
 - i) The relative die construction cost for the part. [8]
 - ii) The relative die material cost for the part. [8]
 - iii) The overall die cost for the part. [4]

QUESTION 7

a) Imagine that you are part of the INDMFG team and you have been asked to roughly estimate the cycle time for the part shown in Fig 7.1. If it is to be produced with tight tolerances, what would you estimate the cycle time to be if the part is made of nylon 6 in a mold with a texture finish, given that the maximum wall thickness of the part is 2.5mm and the minimum wall thickness of the part is 1.5mm.

[15]

b) In an effort to reduce processing costs, what redesign suggestions would you make for the part shown in Fig 7.1 so that the cycle time of the part is reduced? [5]

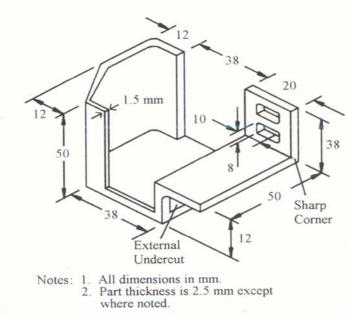
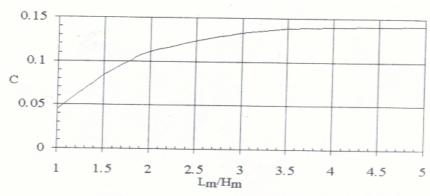



Figure 7.1

		(1 in = 25.4 mm; 100 mm/25.4 mm)	312 111	2					SE	CON	DI	GIT			
	Flat Parts 7					L « :	250 r	nm (4)	250m	m <	L « L	8 0mm	L	> 48	0 mm
6	BASIC COMPLEXITY			u	Exte	er of ernal cuts (U	Numbe Exte nderc		5)	E	mber xtern ercut	al	
Во	x-Shaped Parts				zero		two	More than two	zero		two	More than two	zero	one	More than
		Parts whose peripheral height in one half(3)	٥	1.00/	/	1.38	1.52	/	7	1.79	1.94	1.83	/	2.33	
1	Undercuts	one	not in	1	1.14	1.37/	1.52/	Name and Address of the Owner, where	1.61/	1.84	1.99/	2.13	2.09	2.32/	2.58
2	Parts whose peripheral height from a planar Dividing Surface is not constant - or - parts with a non-planar Dividing Surface(2)		OY -	2	1	1.51	1.66/	2.44	1.81	2.04/	2.19/	3.51 2.33	2.34	2.58	2.89
	I On n Only Pt One a Face	Parts whose ONLY Dividing Surface (2) planar, or parts whose peripheral he from a planar dividing surface is con-	ight stant	3	2.33/	2.50	3.57	2.86	2.75	2.98/	3.13/	3.27	3.17/	3.49	3.66
	of Parts whose peripheral height from a planar U the Dividing Surface is not constant - or - part Parts with a non-planar Dividing Surface(2)		4	2.98/	3.21	3.36/		3.52/	3.75/	3.89/	4.09	4.09	4.28	4.54	
	d On We More ir Than tc One	e planar, or parts whose peripheral height		5	/	4.43/	4.58	4.72/	4.62	4.85	4.99/	5.14	5.03/	5.27/	/
		Parts whose peripheral height from a Dividing Surface is not constant — o parts with a non-planar Dividing Surf	DY -	6	5.31	5.60	5.19	5.89	5.90	6.13/	6.28	6.42	6.43	6.67	6.93

Feat	ture	Number of Features	Penalty per Features	Penalty	SMALL PARTS (L × 250 mm)
Holes	Circular	(n)	2n		Total Penalty <10 => Low cavity detail 10 < Total Penalty <20 => Moderate cavity detail 20 < Total Penalty <40 => High cavity detail
or Depressions	Rectangular		4n		Total Penalty >40 => Very high cavity detail MEDIUM PARTS (250 < L < 480 mm)
Promider	Irregular		7n		Total Penalty <15 => Low cavity detail
Bosses	Solid (8)		n		15 < Total Penalty < 30 => Moderate cavity detail 30 < Total Penalty < 60 => High cavity detail Total Penalty > 60 => Very high cavity detail
50,,6,	Hollow (8)		3n		
Non-periphe walls and/or	ral ribs and/or rib clusters		3n		LARGE PARTS (L > 480 mm)
Side	Simple (9)		2.5n		Total Penalty << 20 => Low cavity detail 20 < Total Penalty << 40 => Moderate cavity detail 40 < Total Penalty << 80 => High cavity detail
Shutoffs	Complex (9)		4.5n		Total Penalty > 80 => Very high cavity detail
Lett	tering (10)		n		
			Total Penalty		1 in = 25.4 mm; 100 mm/25.4mm = 3.94 in

FIGURE 4.19 Determination of cavity detail. (The numbers in parentheses refer to notes found in Appendix 4.A.)

FIGURE 4.23 Value of C for use in Equation 4.6. (If $L_m/H_m < 1$, then use the value of H_m/L_m to determine C.)

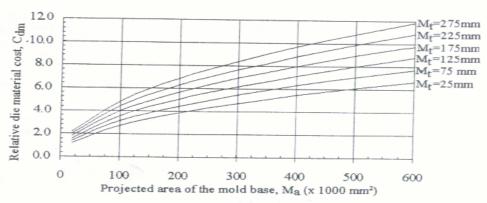


FIGURE 4.24 Relative die material cost.

Table 4.1 Subsidiary complexity rating, C_s . (The numbers in parentheses refer to notes found in Appendix 4.A.)

				Fourt	h Digit
				Without Extensive (7) External Undercuts (5)	With Extensive (7) External Undercuts (5)
				0	1
Third	Cavity	Low	0	1.00	1.25
Digit	Detail (6)	Moderate	1	1.25	1.45
		High	2	1.60	1.75
		Very High	. 3	2.05	2.15

Table 4.2 Tolerance and surface finish rating, C_t. (The numbers in parentheses refer to notes found in Appendix 4.A.)

				Sixth	Digit
				Commercial Tolerance, T _a	Tight Tolerance, T
				0	1
Fifth	Surface	SPI 56	0	-	_
Digit	Finish, R _a	SPI 3-4	1	1.00	1.05
		Texture	2	1.05	1.10
		SPI 1-2	3	1.10	1.15

APPENDIX 4.B

Worksheet for Relative Tooling Costs—Injection Molding

Original Design

Relative Die Construction Cost

Basic Shape	L =	B =	H =	Box/Flat
Basic Complexity	1 st Digit =	2 nd Digit =	C _b =	
Sub. Complexity	3 rd Digit =	4 th Digit =	C _x =	
T _a /R _a	5th Digit =	6th Digit =	C _t =	

Total relative die construction cost C _{dc}	$= C_b C_s C_t =$

Relative Die Material Cost

$L_m =$	B _m =	H _m =	
Die closure parallel to	$L_m/H_m =$	Thus, C =	

$M_{ws} = [0.006CH_m^{-4}]^{1/3} =$	
$M_{\rm wf} = 0.04 L_{\rm m}^{-4/3} =$	
$M_a = (2M_{ws} + L_m)(2M_{ws} + B_m) =$	
$M_t = (H_m + 2M_{\rm wf}) =$	

Thus,

C _{dm} =	$C_d = 0.8C_{dc} + 0.2C_{dm} =$	

Redesign Suggestions

Basic Shape	L =	B =	H =	Box/Flat
Basic Complexity	1 st Digit =	2 nd Digit =	C _b =	50,611,00
Sub. Complexity	3 rd Digit =	4 th Digit =	C _s =	
Γ_a/R_a	5 th Digit =	6th Digit =	C. =	

Total relative die construction cost C _{dc}	$= C_b C_s C_t =$
$C_d = 0.8C_{dc} + 0.2C_{dm} =$	
% Savings =	

Appendix for Stamping Parts

Table 9.7 Determination of the number of stations required (Mahajan, P.V., 1991). The subscripts 1 and 2 refer to the number of stations required for shearing and local forming, and bending and side-action features, respectively.

Number of Active Stations: $N_a = N_{a1} + N_{a2} =$ Number of Idle Stations: $N_i = N_{i1} + N_{i2} =$

- (a) For $L_{ub} \le 25 \, \text{mm}$ $N_{ij} = 1.5(N_{aj} - 1), j = 1, 2$
- (b) For $25 \, \text{mm} < L_{ub} < 125 \, \text{mm}$ $N_{i1} = 0$ (parts without curls) $N_{il} = 2$ (parts with curls) $N_{i2} = (N_{a2} - 1)$
- (c) For $L_{ub} \ge 125 \, mm$, $N_{i1} = N_{i2} = 0$

Table 9.1 Algorithm for determination of the total number of active stations for shearing and local features (Chandrasekaran, S., 1993).

Features	Number of Stations		
External pilot holes	1		
Number of distinct feature types, nf	0123456789		
Number of closely spaced feature types, n _{fc}	0123456789		
Number of feature types with features in opposite direction, noo	0123456789		
Tabs? (y/n)	2/0		
Embosses near part periphery? (y/n)	1/0		
Curls or hems? (y/n)	2/0		
Blanking out station	1		
Total number of active stations, Nal			

Total Number of Stations: $N_s = N_a + N_i =$

Table 9.3 Basic hours required to produce various features using a medium-grade tool. For a high-grade tool add 10 hours. For a low-grade tool, subtract 10 hours. (Note: Data based on information provided by collaborating stampers.)

Operation	Medium Grade
Bending	40
Blanking	40
Piercing	30
Standard Hole	30
Nonstandard Hole	45
Extruded Hole	50
Lancing	40
Notching	40
Embossing	40
Lettering	40
Semi-perf	25
Tab	65
(notch)	(40)
(form)	(25)
Drawing	55
Forming	40
Coining	40
Curl	120
(notch)	(40)
(bend)	(40)
(form)	(40)
Hem	120
(notch)	(40)
(bend)	(40)
(form)	(40)
Side-Action Feature	80

Table 9.2 Algorithm for determination of the total number of active stations for wipe forming and side-action features (Chandrasekaran, S., 1993).

Wipe Forming	Number of Stations
Number of bend stages 0 1 2 3 4 5	023456
Bends in opposite directions? (applies only to parts with one bend stage) (y/n)	1/0
Number of overbends	012345
Number of features in the primary plate near the bend line	0 1 2 3 4 5
Number of side-action features	012345
Total Number of Active Stations, Na2	

Table 9.6 Factors to account for the effects of sheet thickness on die construction and die material costs.

Sheet thickness (mm)	F_{t}	F_{dm}
0.125-3.00 <0.125 >3	1.0 1.7 1.0	1.0 1.0

Worksheet for Relative Tooling Costs—Stamping

Original Design

	Yes	No
Unfoldable?		
Uniform sheet thickness?		
Sheet thickness < 6.5 mm?		
Hole diameter > sheet thickness?		
Features normal to sheet thickness?		
Are bends straight bends?		
Without multiple plate junctions?		
Primary plate without overbends on all sides?		
IF ALL RESPONSES ARE YES—PART IS		

IF ALL RESPONSES ARE YES—PART IS STAMPABLE!

Number of Active Stations

N _{a1} (see Table 9.1) =	N_{a2} (see Table 9.2) =
$N_a = N_{a1} + N_{a2} =$	

Relative Die Construction Cost

t _b (see Table 9.3) =	$t_d = 18.33N_a - 3.33 =$
$t_{dc} = t_b + t_d =$	$C_{dc} = t_{dc}/138 =$
F _t (see Table 9.6) =	$C_{dc} = C'_{dc}F_t =$

Relative Die Material Cost

Flat Envelope:	$L_{ui} =$	$L_{uw} =$
Direction of strip feed:	L _{ub} =	L _{ubn} =
Idle Stations	N _{i1} (see Table 9.7) =	N ₁₂ (see Table 9.7) =
Total Stations	$N_s = N_a + N_{i1} + N_{i2} =$	F _{dm} (see Table 9.6) =

$L_{dl} = N_s L_{ub} + 2L_{ex} =$	$L_{db} = L_{ubn} + 2L_{ex} =$
$A = L_{dl} + 25 =$	$B = L_{db} + 25 =$
$S_{ds} = AB =$	

 $C_{dm} = F_{dm}[2.7S_{ds}/(25.4)^2 + 136]/260.2 =$ $C_{d} = 0.2C_{dm} + 0.8C_{dc} =$

Redesign Suggestions (or % savings if a redesign):