NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

B-Eng Hons Industrial and Manufacturing Engineering

2nd Semester Main Examination

COURSE	:	Manufacturing Engineering Design
CODE	:	TIE 3220
DATE	:	April/May 2014
DURATION	:	3 Hours

INSTRUCTIONS AND INFORMATION FOR THE CANDIDATE

- 1. Answer any five (5) questions.
- 2. All questions carry **<u>20 marks</u>** each.
- 3. This paper contains seven (7) questions.
- 4. There are thirteen (13) printed pages.
- 5. List of formulae is attached in Appendix A at the end of the question paper.

QUESTION 1

- a) There are two broad classes of polymeric material available for polymer processing thermoplastics and thermosets. For the two types highlight the following:
- i) The characteristics of the polymer.

[2,4] [4]

[4]

- ii) Common product applications.
- iii) Types of polymer processing applicable.
- b) Figure Q1 shows the sectional view of two proposed alternative designs for an injection-molded box shaped part that is enclosed on four sides. From the point of view of tooling costs, which of the two designs is most costly? Assume that the wall thickness is the same in all designs.

Figure Q1

QUESTION 2

- a) There are four types of ribs that can be used in Injection molded parts.
 - i) Name the four types of ribs. [4]
 - ii) Describe the effects they have on the cycle time. [2]
 - iii) Explain two (2) ways in which the sink marks due to ribs can be avoided.

[4]

b) You are part of the design team at Kotek Engineering. You have been asked to roughly estimate the cycle time for the part shown in Figure Q2 if it is produced with commercial tolerances. What would you estimate the the cycle time to be if the part is made of nylon 6 in a mold with an SPI finish of 3. The maximum wall thickness of the part is 2.5mm. The minimum wall thickness is 1.5mm.

Figure Q2

QUESTION 3

a) Discuss the following types of metal casting methods, in each highlighting the method, types of metals which can be used for the particular type, part types that can be produced.

i) Sand casting	[3,1,1]
ii) Investment Casting.	[3,1,1]
Explain five DFM guidelines for casting.	[10]

QUESTION 4

b)

- a) The stamping process can be divided into two broad categories. Using appropriate diagrams distinguish the two categories. [6]
 b) The part shown in Figure Q4 is made of soft cold rolled steel. The location of the holes
 - A and C are not critical. Distortion of hole B is not permitted. Determine:
 - i) The relative die construction cost for the part. [6]
 - ii) The relative die material cost for the part. [6]
 - iii) The overall die cost for the part.

Sheet thickness = 1.6 mm semi-perfs (2) 25 65 20 65 20 58

Fig Q4

[2]

QUESTION 5

- a) Use Fig Q5 to answer the following questions;
 - i) Use an appropriate algorithm to deduce the number of active stations required to produce the part. [4]
 - ii) There are two possible layouts for developing the strip for the part. Show these two possibilities by means of clear sketches. [2]
- iii) Choose one possible layout and complete the strip development process. [8]
- b) Define using diagrams the following terms commonly used in the construction of dies.
 - i) Internal undercuts
 - ii) External undercuts

Figure Q5

QUESTION 6

- a) For a production volume of 40 000 parts, given that: Shear strength σ 306MPa, A-48.2inches, Feff – 0.75, tsetup – 1hr, t_o- 0.234, V_o - 3750mm³, Cmr – 1.00 and Cd – 3.49 for the part shown in Fig Q4 in question 4. Assume it is made of soft cold rolled steel. Determine:
 - (i) the relative processing cost,
 - (ii) relative material cost and [2]
 - (iii) Total relative part cost
- b) As part of BJ Tool and DIE you are to give a talk to a design class that is involved in the design of a product that contains a substantial number of stamped parts. As part of your talk you decide to focus on the design of the parts as it affects tooling cost.
 - i) Explain why you decide to focus on tooling cost as opposed to material or processing cost? [4]
 - ii) Explain in detail exactly which features of the part affect tooling cost. [4]

QUESTION 7

[8]

[2]

- a) Briefly explain four aspects in the design for manufacturing guidelines for stamped parts.
- b) For the stamping shown in Fig Q7 what are the redesign suggestions that you can make to help reduce the cost to stamp the part. [6]
- c) Explain in the detail the 6 rules of thumb that should be followed in order to produce a good strip layout. [6]

End of Exam

APPENDIX A: A LIST OF FORMULAE FOR INJECTION MOLDING

[8]

			5.74 II	9	SECOND DIGIT										
P	arts 7					L	250 n	NN (4)	250n	n <	L < I	48 0mm	L	> 48	0 nn
6 5	6.28	BASIC COMPLEX	ITY		u	Numb Exte Indere	er of ernal cuts (5)	U	Humber Exte	er of rnal uts (5)	Nu E Und	mber xtern ercut	of a1 (5 (5)
Pa	Shaped rts				zero	one	two	More than two	zero	one	two	More than two	zero	one	More than one
			Part	T	0	1 27/	2	3	4	5	6	7	8	9	10
	Parte	Parts whose peripheral height from a planar dividing surface is constant (2) Part not in one half(3) Part not in one half(3) Part not in one half(3) Part not in one half(3) Part not in one half(3)		٥	1.64	1.87	2.02	2.16	1.44	1.65	1.19	1.94	1.83/	2.07	2.33
Und	ithout ternal lercuts			1	1.14	1.37	1.52	1.66	1.61	1.84	1.99/	2.13	2.09	2.32	2.58
	(1)			2	1.28	1.50	1.66	1.80/	1.81	2.04	2.19	2.33	2.34	2.58	2.84
Pt	On Only One	Parts whose ONLY Dividing Surface(2 planar, or parts whose peripheral h from a planar dividing surface is con	0 is aight nstant	3	2.33	2.57	2.77	2.86	2.75	2.98	3.13	3.27	3.17	3.40	3.66
a r t l s r	of the Part	Parts whose peripheral height from a planar Dividing Surface is not constant - or - parts with a non-planar Dividing Surface(2)		4	2.98	3.21	3.36	3.50	3.52	3.75	3.89	4.04	4.04	4.28	4.54
e irt c	On More Than	Parts whose OHLY Dividing Surface(2) is planar, or parts whose peripheral height from a planar dividing surface is constant		5	4.20	4.43	4.58	4.72	4.62	4.85	4.99	5.14	5.03	5.27	5.53
hut	Face of the Part	Parts whose peripheral height from a Dividing Surface is not constant - parts with a non-planar Dividing Sur	planar or - face(2)	6	5.37	5.60	5.74	5.89	5.90	6.13	6 28	6.42	6.43	6.67	6.93

Feat	ture	Number of Features	Penalty per	Penalty	SMALL PARTS (L < 250 mm)
Heler	Circular	(n)	2n		Total Penalty <(10 => Low cavity detail 10 < Total Penalty <(20 => Moderate cavity detail 20 < Total Penalty <(40 => High cavity detail
OI	Rectangular		4n		Total Penalty >40 => Very high cavity detail
Depressions	Irregular		7n		Total Penalty (15 =) Low cavity detail
Basses	Solid (8)		n		30 < Total Penaky < 30 => Moderate cavity detail 30 < Total Penaky <60 => High cavity detail Total Penaky >60 => Very high cavity detail
	Hollow (8)		3n		
Non-periphe walls and/or	ral ribs and/or rib clusters (8)		3n		LARGE PARTS (L > 480 mm)
Side	Simple (9)		2.5n		20 < Total Penalty <20 => Low cavity detail 20 < Total Penalty <40 => Moderate cavity detail 40 < Total Penalty <80 => High cavity detail
Shutoffs	Complex 19		4.5n		Total Penalty > 80 => Yery high cavity detail
Let	tering (10)		n		
			Total Penalty		(1 in = 25.4 mm; 100 mm/25.4mm = 3.94 in)

FIGURE 4.19 Determination of cavity detail. (The numbers in parentheses refer to notes found in Appendix 4.A.)

FIGURE 4.23 Value of C for use in Equation 4.6. (If $L_m/H_m < 1$, then use the value of H_m/L_m to determine C.)

FIGURE 4.24 Relative die material cost.

Table 4.1 Subsidiary complexity rating, C_s . (The numbers in parentheses refer to notes found in Appendix 4.A.)

			2	Fourth	h Digit
				Without Extensive (7) External Undercuts (5)	With Extensive (7) External Undercuts (5)
				0	1
Third	Cavity	Low	0	1.00	1.25
Digit	Detail (6)	Moderate	1	1.25	1.45
		High	2	1.60	1.75
		Very High	- 3	2.05	2.15

Table 4.2	Tolerance and	surface	finish	rating,	Ct. (The	numbers	in	parentheses	refer to
notes found	d in Appendix -	4.A.)							

				Sixth	Digit
				Commercial Tolerance, T _a	Tight Tolerance, T _a
				0	1
Fifth	Surface	SPI 56	0	_	_
Digit	Finish, Ra	SPI 3-4	1	1.00	1.05
1000 - 110	Construction of the second	Texture	2	1.05	1.10
		SPI 1-2	3	1.10	1.15

Worksheet for Relative Tooling Costs—Injection Molding

Original Design

Relative Die Construction Cost

Basic Shape	L =	B =	H =	Box/Flat
Basic Complexity	1 st Digit =	2 nd Digit =	C _b =	
Sub. Complexity	3rd Digit =	4 th Digit =	C. =	
T _a /R _a	5 th Digit =	6th Digit =	C _t =	

Total relative die construction cost C_{de} = 0

 $= C_b C_s C_t =$

.

Relative Die Material Cost

L _m =	B _m =	H., =
Die closure parallel to	L _m /H _m =	Thus, C =
$M_{ws} = [0.006 C H_m^4]^{1/3} =$		
$M_{wf} = 0.04 L_m^{\#3} =$		
$M_a = (2M_{ws} + L_m)(2M_{ws} -$	+ B _m) =	
$M_t = (H_m + 2M_{wt}) =$		
Thus,		
C _{dm} =	$C_d = 0.8C_{dc} + 0.2C_{dm} =$	

Redesign Suggestions

Basic Shape	L =	B =	H =	Box/Flat
Basic Complexity	1 st Digit =	2nd Digit =	C. =	DOATIA
Sub. Complexity	3rd Digit =	4 th Digit =	C. =	
T _a /R _a	5 th Digit =	6 th Digit =	C, =	
Total relative die cons	struction cost C _{de}	$= C_{1}, C_{2}, C_{3} =$		
$C_{d} = 0.8C_{de} + 0.2C_{dm} =$				
% Savings =				

SECOND DIGIT

Wall Thickness

					w < 1 mm	1mm	2mm < w < 3mm	3mm < w <4mm	4mm <u <5mm<="" th=""><th>w > 5mm</th></u>	w > 5mm
	(q)	ninipa Januaic	IPJ aldPUO	(s, c	8	F	2		4	5
	;	Plates with 117) w < 100 [3]	Without ribs	¹ Difficult	1.00	1.35	1.70	2.55	120
	I JE VICE WICH	without lateral pr	ojections (4)	With ribs	to fill	1.10	1.45	1.85	2.70	- aco -
	or Frames [2]	Plates with Lu 12w	▶100 and/or	Without ribs	-0	1.15	1.55	2.00	2.85	- materials
		plates with lateral (projections (4)	With ribs	eject	1.25	1.82	2.20	3.85	6)
	(h) Non-	Slender Partit	noble Dar	tc N	w < 1 mm	1mm	2mm < w 3mm</th <th>3mm <w th="" «4mm<=""><th>44mm < w <5mm</th><th>w > 5mm</th></w></th>	3mm <w th="" «4mm<=""><th>44mm < w <5mm</th><th>w > 5mm</th></w>	44mm < w <5mm	w > 5mm
					8	ł	2	m	4	5
	Plates	Plates which are	With	hout non- bheral ribs	-	1.68	2.39	3.11	3.82	
	without significant	grilled or slotted(7)	Wi perip	ith non- heral ribs 1		1.82	2.53	3.25	3.96	
	significant bosses (6)	Dlatee	With perip	hout non- heral ribs	Difficult_	1.96	2.67	3.39	4.10	Use Foamed
3	without non- peripheral	which are not grilled	With o	concentric iss ribbing	to fill or	2.10	2.81	3.53	4.24	materials (9)
تر ' م	bosses	or slotted [7]	With r unidirectic	adial or onal ribbing	eject	2.24	2.96	3.67	4.39	
Ĭ.a	10 Plates with	Plates with rib and/or boss thick-	Ribs/bosse by guss	es supported		2.38	3.10	3.81	4.53	
	significant ribs (5) and/or	ness less than the wall thickness (8)	Ribs/bosses r by gusse	not supported		2.52	3.24	3.95	4.67	
	bosses (6)	Plates with rib greater than or e	and/or boss th squal to the wa	hicknes (8)		2.66	3.38	4.09	4.81	
						1mm	2mm / H. / 3mm	3mm / 14 / 14mm	Jimm / 14 / Emm	
	(C)	Non-Partition	able Parts		0	-	2		-	5
		14	Easy	to cool (10)	³ Difficult to	2.66	3.38	4.09	4.81	Use Foamed
	rarts wnich	are not partitionaut	Difficu	ilt to cool (10)	fill or eject	3,56	4.50	5.47	6.40	Materials

Classification system for basic relative cycle time, t_b. (The numbers in parentheses refer to notes found in Appendix 5.A.) FIGURE 5.2

(1 in = 25.4 mm; 1 mm/25.4 mm = 0.04 in)

Easy to cool (10) 0 Difficult to cool (10) 1

 $\label{eq:table 5.3} \begin{array}{l} \mbox{Additional relative time, } t_{\rm e}, \mbox{ due to inserts and internal threads. (The numbers in parentheses refer to notes found in Appendix 5.A.) \end{array}$

Third Diait	Parts without internal threads (11)	Without molded-in inserts (12) With molded-in inserts (12)	0 1	0.0 0.5*
Trura Digu	Parts with internal threads (11)	Without molded-in inserts (12) With molded-in inserts (12)	2 3	0.1* 0.1*/0.5*

 $\label{eq:table 5.4} \begin{array}{ll} \mbox{Table 5.4} & \mbox{Time penalty, } t_p, \mbox{due to surface requirements and tolerances. (The numbers in parentheses refer to notes found in Appendix 5.A.) \end{array}$

Table 5.1 Data for the reference part.		
Material	Polystyrene	
Material Cost (K _{po})	$1.46 \times 10^{-4} \text{ cents/mm}^{3(1)}$	
Vol (V _o)	1244 mm ³	
Die Material Cost (K _{dmo})	\$980 ⁽²⁾	
Die Construction Time (Includes design and build hours)	200 hours ⁽²⁾	
Labor Rate (Die Construction)	\$30/hr ⁽²⁾	
Cycle time (t _o)	$16 s^{(2)}$	
Mold Machine Hourly Rate (Cho)	\$27.53 ⁽³⁾	

					Fifth	Digit
					Tolerances not difficult to hold (14)	Tolerances difficult to hold (14)
					0	1
Fourth Digit	Plate surface requirements (13)	Low H i	$1 \text{ mm} \le w \le 2 \text{ mm}$ $2 \text{ mm} < w \le 3 \text{ mm}$ $3 \text{ mm} < w \le 4 \text{ mm}$	0 1 2 3	1.00 1.30 1.22 1.16	1.20 1.43 1.41 1.37
		ň	$4mm < w \leq 5mm$	5	1.10	1.32

Worksheet for Relative Processing Cost and Total Relative Cost

Original Des	ign/Redesign				
$L_u =$	$\mathbf{B}_{u} =$	$L_u/B_u =$	Slender/	Non-slender?	
Basic Relative	Cycle Time		•		•
	Plate 1	Plate 2	Plate 3	Plate 4	Plate 5
Ext/Int					
1 st Digit					
2 nd Digit					
t _b					
Additional Tir	ne				
3 rd Digit					
t _e					
Time Penalty	•			•	
4 th Digit					
5 th Digit					
t _p					
Relative Cycle	Time for Plate	•			•
$\mathbf{t}_{\mathrm{r}} = (\mathbf{t}_{\mathrm{b}} + \mathbf{t}_{\mathrm{e}})\mathbf{t}_{\mathrm{p}}$					
Relative Cycle	Time for the pa	urt =			
Relative Proce	essing Cost		•	•	
$A_p =$	$F_p =$		C _{hr} =	$C_e = t_r$	C _{hr} =
Relative Mater	rial Cost				
V =	V _o =		C _{mr} =	$C_m = ($	$V/V_o)C_{mr} =$
Total Relative	Cost				
N =					
$C_r = 0.001820$	$C_{\rm m} + (6980/N)C_{\rm m}$	$C_{d} + 0.1224C_{e}$			

Appendix for Stamping Parts

 Table 9.7
 Determination of the number of stations

 required (Mahajan, P.V., 1991). The subscripts 1 and 2 refer
 to the number of stations required for shearing and local

 forming, and bending and side-action features, respectively.
 to the number of stations required for shearing and local

Number of Active Stations: $N_a = N_{a1} + N_{a2} =$ Number of Idle Stations: $N_i = N_{i1} + N_{i2} =$

- (a) For $L_{ub} \le 25 \text{ mm}$ $N_{ij} = 1.5(N_{aj} - 1), j = 1, 2$
- (b) For 25 mm < L_{ub} < 125 mm $N_{i1} = 0$ (parts without curls) $N_{i2} = 2$ (parts with curls) $N_{i2} = (N_{a2} - 1)$

(c) For
$$L_{ub} \ge 125 \text{ mm}$$
, $N_{i1} = N_{i2} = 0$

Total Number of Stations: $N_S = N_a + N_i =$

.

 Table 9.1
 Algorithm for determination of the total number of active stations for shearing and local features (Chandrasekaran, S., 1993).

Features	Number of Station		
External pilot holes	1		
Number of distinct feature types, nr	0123456789		
Number of closely spaced feature types, n _{fe}	0123456789		
Number of feature types with features in opposite direction, non	0123456789		
Tabs? (y/n)	2/0		
Embosses near part periphery? (y/n)	1/0		
Curls or hems? (y/n)	2/0		
Blanking out station	1		
Total number of active stations, Nat			

Table 9.3 Basic hours required to produce various features using a medium-grade tool. For a high-grade tool add 10 hours. For a low-grade tool, subtract 10 hours. (Note: Data based on information provided by collaborating stampers.)

Operation	Medium Grade
Bending	40
Blanking	40
Piercing	30
Standard Hole	30
Nonstandard Hole	45
Extruded Hole	50
Lancing	40
Notching	40
Embossing	40
Lettering	40
Semi-perf	25
Tab	65
(notch)	(40)
(form)	(25)
Drawing	55
Forming	40
Coining	40
Curl	120
(notch)	(40)
(bend)	(40)
(form)	(40)
Hem	120
(notch)	(40)
(bend)	(40)
(form)	(40)
Side-Action Feature	80

 Table 9.2
 Algorithm for determination of the total number of active stations for wipe forming and side-action features (Chandrasekaran, S., 1993).

Wipe Forming	Number of Stations
Number of bend stages 0 1 2 3 4 5	023456
Bends in opposite directions? (applies only to parts with one bend stage) (y/n)	1/0
Number of overbends	012345
Number of features in the primary plate near the bend line	012345
Number of side-action features	012345
Total Number of Active Stations, N.2	

Table 9.6 Factors to account for the effects of sheet thickness on die construction and die material costs.			
Sheet thickness (mm)	F_{i}	F_{dm}	
0.125-3.00	1.0	1.0	
<0.125	1.7	1.0	
>3	1.0	1.4	

	Worksheet	for	Relative	Tooling	Costs-	-Stamping
Original Des	ign					

	Yes	No
Unfoldable?		
Uniform sheet thickness?		
Sheet thickness < 6.5 mm?		
Hole diameter > sheet thickness?		
Features normal to sheet thickness?		
Are bends straight bends?		
Without multiple plate junctions?		
Primary plate without overbends on all sides?		
IF ALL RESPONSES ARE YES—PART IS STAMPABLE!		

Number of Active Stations

N_{a1} (see Table 9.1) =	N_{a2} (see Table 9.2) =	
$N_a = N_{a1} + N_{a2} =$		

Relative Die Construction Cost

$t_{\rm b}$ (see Table 9.3) =	$t_d = 18.33N_* - 3.33 =$	
$t_{dc} = t_b + t_d =$	$C_{de} = t_{de}/138 =$	
F_t (see Table 9.6) =	$C_{dc} = C'_{dc}F_1 =$	

Relative Die Material Cost

Flat Envelope:	L _{ul} =		L _{uw} =
Direction of strip feed:	L _{-ub} =		L _{ubn} =
Idle Stations	N _{it} (see Tab	le 9.7) =	N_{12} (see Table 9.7) =
Total Stations	$\mathbf{N}_{s} = \mathbf{N}_{a} + \mathbf{N}_{11} + \mathbf{N}_{12} =$		F_{dm} (see Table 9.6) =
$L_{dl} = N_{4}L_{ub} + 2L_{ex} =$		$L_{\rm db} = L_{\rm ubn}$	+ 2L _{ex} =
$A = L_{dl} + 25 =$			25 =
S _{ds} = AB =			
$A = L_{dt} + 25 = B = L$ $S_{ds} = AB = C$ $C_{dm} = F_{dm} [2.7S_{ds} / (25.4)^2 + 136] / 260.2 = C$			
$C_{d} = 0.2C_{dm} + 0.8C_{dc} =$			

Relative Machine Hourly Rate Chr

Worksheet for Relative Processing Costs and Total Relative Cost—Stamping Original Design/Redesign

Tonnage required (linear dimensions in mm)

Material =	$\sigma_s =$	MPa	$\sigma_t =$	MPa	L _{out} =	
t =	Detail = low/med/high		X _{dd} =		L _{bt} =	

$F_{out} = 1.5 L_{out} \sigma_s t =$	kN	$F_{st} = 21L_{out}t =$	kN	
$F_{s} = (F_{out} + F_{st})(1 + X_{dd}) =$		$F_b = \sigma_t L_{bt} t/18 =$	kN	
A = inches (from die material		$F_p = 1.5F = 1.5(F_s + F_b) =$		
calculation)		(Note: $1 \text{ ton} = 8.89 \text{ kN}$)		

Press Selection (See Figure 10.1)

Tons =	SPM =	C _{hr} =
		(See Figure 10.2)

Relative Processing Cost

N	$t_{cy} = 3600[1/F_{eff}(60SPM) + 1/N]$	$t_r = t_{cy}/0.234$	$C_e = t_r C_{hr}$

Relative Material Cost

Flat Envelope	
$V = L_{ul}L_{uw}t = mm^3$	
	Flat Envelope $V = L_{ul}L_{uw}t = mm^3$

Total Relative Part Cost $(C_r = 0.0215C_m + (6561/N)C_d + 0.00177C_e)$

Ν	C,