

NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY

FACULTY OF INDUSTRIAL TECHNOLOGY

DEPARTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING

COMPUTER AIDED DESIGN/COMPUTER AIDED MANUFACTURING (CAD/CAM) I

TIE 5111

First Semester Supplementary Examination Paper

July/August 2015

This examination paper consists of 6 printed pages

Time Allowed: 3 hours

Total Marks: 100

Special Requirements: None

Examiner's Name: Nicholas Tayisepi

INSTRUCTIONS AND INFORMATION TO CANDIDATE

1. Answer any four (4) questions.

2. Each question carries 25 marks.

3. Use of calculators is permissible.

MARK ALLOCATION

QUESTION	MARKS
1.	25
2.	25
3.	25
4.	25
5.	25
6.	25
TOTAL MARKS ATTAINABLE BY CANDIDATE	100

QUESTION ONE

- (a) Briefly explain the four main hardware, of CAD/CAM equipment, networking arrangements possible for Computer Aided Designing (CAD) and Computer Aided Manufacturing (CAM) systems. [8]
- (b) Describe the steps of the design process according to the Pahl and Beitz model. Show, on the diagram, all the stages and indicate the input and outputs for each stage. [17]

QUESTION TWO

- (a) Computer Aided Design provides the designer with a rich variety of techniques for the definition of Geometric entities. Describe with the aid of illustrative sketches the methods available for the definition (construction) of:
- (i) point, [5]
- (ii) line, [5]
- (iii) arc, [5]
- (iv) surface representation. [5]
- (b) Identify and explain any five solid modelling primitives that are found on the AutoCAD modelling platform that you have used. [5]

QUESTION THREE

- (a) What is geometric modeling? [3]
- (b) Name and explain the main categories of solid modeling approaches.
- (c) Create the CSG model of the solid represented in Figure QU3. [18]
- (d) What is the height of the binary tree in each case? [4]

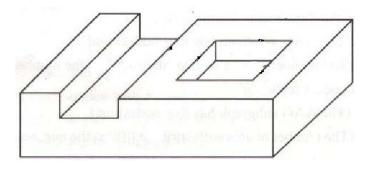


Figure QU3. Lug sit

Page 2 of 6

TIE 5111

Copyright: National University of Science and Technology, 2015

QUESTION FOUR

- (a) State the two main types of Euler Operators used in the development and manipulation of solid CAD Models like a Polyhedron. [3]
- (b) Once a polyhedron model is available a CAD modeller may edit it into many other topologically valid solid models by the finite process of adding or deleting vertices, edges and faces to create a new polyhedron using the Euler Mantyla operators, which form a complete set of modelling primitives for manifold solids. Complete the Table TQ4 by entering the relevant Euler Operators and the corresponding parameter entries where required.
 [11]

Table TQ4 Euler Operator and Parameters

Operator Name	Meaning Meaning	V	E	F	L	S	G
MSFV							
MEV	Make and Edge and a Vertex						
MFV							
MFE							
MSG							
MEKL							
KEV		-1	-1				
KFE							
KSFV							
KSG							
KEML							

Q4b) (i) Given the Inverse Euler Matrix (M⁻¹) below determine the Euler coordinates for the feature shown in Figure QU4. [9]

Given:

$$M^{-1} = \frac{1}{12} \begin{bmatrix} 9 & -5 & 2 & -2 & 3 & 1 \\ 3 & 5 & -2 & 2 & -3 & -1 \\ -3 & 7 & 2 & -2 & 3 & 1 \\ -6 & 2 & 4 & 8 & -6 & 2 \\ 3 & 5 & -2 & 2 & 9 & -1 \\ -6 & -2 & 8 & 4 & -6 & -2 \end{bmatrix}$$

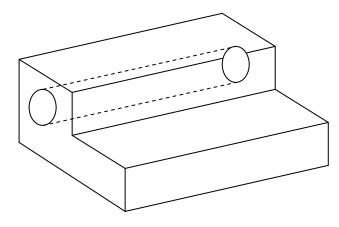


Figure QU4

(ii) Briefly explain how the Euler coordinates determination can be of significance in commercial draughting packages. [2]

QUESTION FIVE

- (a) Explain the concept of boundary representation in modelling. [3]
- (b) Generate the boundary representation of the solid shown in Figure QU5 below. [12]

Page 4 of 6

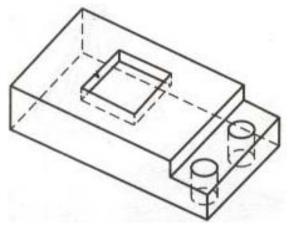


Figure QU5. Drilled steeped block

- Q5(c) Briefly discuss two CAD/CAM data exchange standards and state their benefits. [4]
- (d) Describe the following modelling techniques, using diagrams as appropriate:

i)	pure primitive instancing	[2]
ii)	cell decomposition	[2]
iii)	spatial occupancy enumeration	[2]

QUESTION SIX

- (a) A point P (100, 100, 200) is to be translated by 50 units in X-direction, 60 units in they-direction and 40 units in the Z-direction. It was then given a rotation of 10 degrees about the x-axis, 15 degree about the y-axis and 15 degrees about the Zaxis. Find the transformation matrix and co-ordinates of the final position of the point.
 [6]
- (b) Given four control points A(4,8), B(7, 9), C(8, 1), and D(10, 4) for a Bezier curve

$$\overline{p} = \overline{p}(u) = p_0(1 - 3u + 3u^2 - u^3) + \overline{p}_1(3u - 6u^2 + 3u^3) + \overline{p}_2(3u^2 - 3u^3) + \overline{p}_3(u^3).$$

Compute the gradients at start, mid and end point of the curve.

- (c) Explain briefly when AutoLISP programming may be the best relevant CAD Models generating design domain in an engineering and manufacturing environment. [4]
- (d) Write an AutoLISP code for auto-drawing the profile defined on Figure QU6, below, upon the entry of a variable dimension and picking up a start point by the operator. Also the program output should include the area represented (covered) by the outline drawn.
 [9]

Page 5 of 6

[6]

TIE 5111

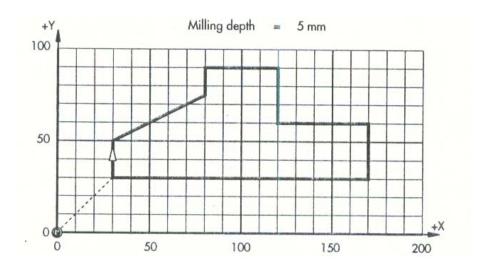


Figure QU6. Machine Plate

_____End of Examination_____