	NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY		
DEPA	RTMENT OF INDUSTRIAL AND MANUFACTURING ENGINEERING		
Master of Engineering Degree in Manufacturing Engineering and Operations Management			
COMPUTER CONTROL OF MANUFACTURING SYSTEMS			
COURSE CODE -TIE 6120			
Secono May,	d Semester Main Examination Paper 2015		

This examination paper consists of 4 pages

Time Allowed	:	3 hours
Total Marks	:	100
Special Requirements	:	Calculator
Examiner's Name	:	Dr Z. B. Dlodlo

INSTRUCTIONS TO CANDIDATE

- 1. Answer any four (4) questions.
- 2. Each question carries 25 marks.

QUESTION 1

- (a) What are the major differences between the classical or frequency-domain technique and the state space or time-domain approach used for the design and analysis of feedback control systems? [5]
- (b) Name and describe the advantages and disadvantages of each approach. [5]
- (c) Represent the electrical network shown in Fig Q1 in state space, where $v_o(t)$ is the output. [15]

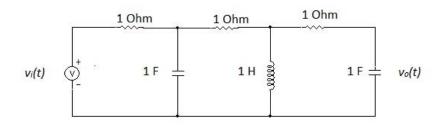


Fig Q1

QUESTION 2

The International Standard for Programmable Controllers (the IEC 1131-3) specifies three graphical languages and two text-based languages for programming PLCs.

- (a) Explain, why it became necessary to develop this standard. [5]
- (b) Name and describe the languages indicating to which category the language belongs and one application for which it is suited. [10]
- (c) Discuss how personal computers (PCs) and PLCs are converging in industrial applications. [10]

QUESTION 3

- (a) Name the basic hardware components of a servo. [4]
- (b) Explain the information flow in numerical control and the individual basic blocks of the system. [6]
- (c) Figure Q3 shows a block diagram of a positional servomechanism. Given $\tau_{CL} = 0.01$ sec, $K_p = 100$ V/mm, $K_{CL} = (rad/sec/V) = 5$, r = 0.2 (mm/rad).

Determine

- (i) The natural frequency ω_n (rad/sec) and damping ratio ς of the positional servo. [5]
- (ii) The initial acceleration $\ddot{x} \text{ (mm/sec}^2)$ at the start of a step command $x_{com} = 2 \text{ mm}$. [5]
- (iii) The steady-state error $er_{p,ss}$ (mm) at velocity of $\dot{x} = 20$ mm/sec. [5]

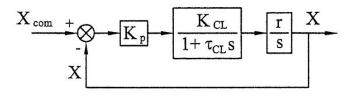


Fig Q3

Page 2 of 4

Copyright: National University of Science and Technology, 2015

QUESTION 4

(a) State the Final Value Theorem. [2]
(b) Using the Final Value Theorem, derive an expression for the steady-state error *E(s)* to a system whose transfer function is *G(s)*. [3]
(c) Verify that if the position loop in Fig Q4 is closed with unity gain and *K_p* is placed in the forward path (e.g. between the position and velocity summing points), the final value of the position to a step command of magnitude θ_d will be θ_d. Assume that the friction (*T_f(s)*) and gravitational (*T_{gr}(s)*) torques are zero. [20]

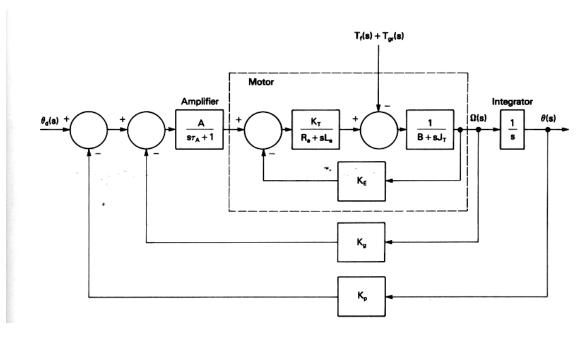


Fig Q 4

QUESTION 5

(a)	Explain why it is necessary to implement an adaptive control strategy t	o NC	
	machining.	[5]	
(b)	Name the three categories into which adaptive control systems for mac	e three categories into which adaptive control systems for machine	
	tools can be classified.	[3]	
(c)	Draw the diagram of the software and hardware components of the sys	tem for	
	adaptive control for constant milling force.	[10]	
(d)	Explain, briefly, the purpose and action of each component.	[7].	

QUESTION 6

(a)	About 80% of commercial robot controllers are of the PID type. Give reasons for	[•] this
	huge preference of the PID controller over other types of controllers.	[5]
(b)	Name and briefly describe any other type of controller that may be used instead of	of the
	PID controller.	[4]
(c)	Write the mathematical model of the PID controller in	

- [3] (i) the time domain,
- the *s*-domain. (ii)
- [3] (d) What are the names given to the coefficients of each of the terms that comprise the PID controller. [3] [7]
- (e) In practice, how are the constants mentioned in (d) above determined?

END OF EXAMINATION