NATIONAL UNIVERSITY OF SCIENCE AND TECHNOLOGY FACULTY OF INDUSTRIAL TECHNOLOGY DEPARTMENT OF TEXTILE TECHNOLOGY FIRST SEMESTER EXAMINATIONS DECEMBER 2005 YARN TECHNOLOGY TXT 2107

Time: 3 hours

Instructions to Candidates

Answer all questions in Section A (40 marks in total) and any THREE in Section B (60 marks in total). Total marks = 100

Section A

Question 1

- (a) Calculate the limit of irregularity for a 30tex yarn produced from fibre of 3.3 den linear density. (2 marks)
- (b) Calculate the coefficient of unevenness index variation after drawing given that a 14 ktex sliver was drafted to a 500 tex roving and that the CV% a mass before and after drafting is 3.6% and 7.9% respectively. (3 marks)

Question 2

- (a) Calculate the time taken by the carding action operation given that the length of the tuft is 80 mm and the speed of the main cylinder is 600m/min. (3 marks)
- (b) How does the rotor groove affect the properties of rotor spun yarn, consider a wide and a narrow groove. (3 marks)

Question 3

Calculate the maximum permissible eccentricity given that the draft is 14, diameter of top and bottom rollers is 1 inch and the maximum permissible CV% of mass caused by the drafting rollers is 5.7%. (4 marks)

Question 4

Suppose a ring spinning machine is fed with two roving with an average CV% of mass of 12% and produces a yarn with irregularity of 14%. What is the CV% of mass introduced by the spinning system. (3 marks)

Question 5

- (a) Calculate the corrected traveler speed given that the spindle speed is 16 000 rpm, ring diameter is 57mm, front roller delivery speed is 24m/min and package circumference is 102 mm, take up factor K to be = 0.98 (3 marks)
- (b) To maintain the same traveler speed, what will be the spindle speed if the ring diameter was reduced to 40 mm. (2 marks)

Question 6

In conventional draft distribution, it is the second roller that slips. How can the draft be changed to reduce the critical weighting of the second roller.

(4 marks)

Question 7 (a) Given that the length of the intensive carding arc is 20mm, that of the subsequent carding arc is 35 mm, the speed of the main cylinder is 700m/min and that of the worker is 5m/min.

- (i) Calculate the length of the carding arc. (3 marks)
- (ii) What conclusion is drawn on the function of the taker-in. (2 marks)
- (b) What are the possible operations used to increase the carding arc and what limitations do they give? (8 marks)

SECTION B (Answer any three)

Question 8

- (a) Discuss methods and instruments used to determine the unevenness in linear density of spinning products. (14 marks)
- (b) Outline the drawbacks of each system. (8 marks)

Question 9

- (a) With the help of a diagram outline the whole cycle of an auto weigher mechanism. (8 marks)
- (b) With the aid of a diagram explain the operational principle of an electromechanical autoweigher. (7 marks)
 - (i) Discuss the principle of twist insertion in the dref/friction spinning mechanism, what are the problems associated with this type of twist insertion. (3 marks)
 - (ii) From the above principle, formulate a general expression for twist insertion in the system. (2 marks)

Question 10(a) Show that yarn tension in ring spinning is $F = \mu mw^2 R^2$ r r where; μ is the coefficient of friction between the yarn and the traveler. $m = mass$ of the traveler $w = angular velocity of the travelerR = radius of the ringr = diameter of the package(16 marks)(b) What practical conclusions are drawn from this formula?(4 marks)Question 11(a) What are the conditions to be observed in:(i) carding action(ii) stripping action(iii) elimination of impurities on the strippers(6 marks)$			
$F = \underline{\mu m w^2 R^2}$ where; μ is the coefficient of friction between the yarn and the traveler. m = mass of the traveler w = angular velocity of the traveler R = radius of the ring r = diameter of the package (16 marks) (b) What practical conclusions are drawn from this formula? (4 marks) (b) What are the conditions to be observed in: (i) carding action (ii) stripping action	Quest	ion 10	
 where; µ is the coefficient of friction between the yarn and the traveler. m = mass of the traveler w = angular velocity of the traveler R = radius of the ring r = diameter of the package (16 marks) (b) What practical conclusions are drawn from this formula? (4 marks) Question 11 (a) What are the conditions to be observed in: (i) carding action (ii) stripping action 	(a)	Show that yarn tension in ring spinning is	
 where; µ is the coefficient of friction between the yarn and the traveler. m = mass of the traveler w = angular velocity of the traveler R = radius of the ring r = diameter of the package (16 marks) (b) What practical conclusions are drawn from this formula? (4 marks) Question 11 (a) What are the conditions to be observed in: (i) carding action (ii) stripping action 		$\mathbf{F} = \underline{\mu \mathbf{m} \mathbf{w}^2 \mathbf{R}^2}$	
m = mass of the traveler w = angular velocity of the traveler R = radius of the ring r = diameter of the package (16 marks) (b) What practical conclusions are drawn from this formula? (4 marks) Question 11 (a) What are the conditions to be observed in: (i) (i) carding action (ii) stripping action			
 w = angular velocity of the traveler R = radius of the ring r = diameter of the package (16 marks) (b) What practical conclusions are drawn from this formula? (4 marks) Question 11 (a) What are the conditions to be observed in: (i) carding action (ii) stripping action 	where		
R = radius of the ring r = diameter of the package (16 marks) (b) What practical conclusions are drawn from this formula? (4 marks) Question 11 (a) What are the conditions to be observed in: (i) (ii) carding action (ii) stripping action			
r = diameter of the package (16 marks) (b) What practical conclusions are drawn from this formula? (4 marks) Question 11 (a) What are the conditions to be observed in: (i) (i) carding action (ii) stripping action			
 (b) What practical conclusions are drawn from this formula? (4 marks) Question 11 (a) What are the conditions to be observed in: (i) carding action (ii) stripping action 		e	
 (a) What are the conditions to be observed in: (i) carding action (ii) stripping action 	(b)	What practical conclusions are drawn from this formula?(4 marks)	
 (a) What are the conditions to be observed in: (i) carding action (ii) stripping action 	Quest	ion 11	
(i) carding action(ii) stripping action	-		
(ii) stripping action	(4)		
	(b)	By balancing and indicating the forces acting on the card cloth wires show that $\cot \alpha > \mu$ where α is the angle of inclination of the card cloth wires and μ is the coefficient of friction between the wires and fibres. (4 marks)	
(c) In the interaction of the feed rollers, taker-in and main cylinder of burr breast roller, how are impurities removed in:	(c)	•	
 (i) downward movement of the taker-in (3 marks) (ii) Upward movement of the taker-in (3 marks) 			
(d) What is the significance of the relative speed of liker-in and feed rollers on fibr breakages and impurity elimination? (4 marks)	(d)	What is the significance of the relative speed of liker-in and feed rollers on fibre breakages and impurity elimination?(4 marks)	;
Oraction 12	Orrest	ing 10	
Question 12(a)Outline how drafting waves are formed during roller drafting.	-		
(a) Outline now drafting waves are formed during roller drafting. (5 marks)	(a)		
(b) Outline factors causing periodic variations in roller drafting. (10 marks)	(b)		
 (c) Calculate the maximum rotor speed that can be achieved given that the rotor diameter is 30 mm and the explorable yarn breaking strength is 0.5kg for a 30 tex yarn. (5 marks) END OF QUESTION PAPER 	(c)	rotor diameter is 30 mm and the explorable yarn breaking strength is 0.5kg for a 30 tex yarn. (5 marks)	